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ABSTRACT 

 
The advent of GPS-based travel surveys offers an opportunity to develop 

empirically-rich route-choice models. However, the GPS traces must first be mapped to 
the roadway network, map-matching, to identify the network-links actually traversed. For 
this purpose, two enhanced map-matching algorithms are implemented and compared. 
Next, the choice set must also be constructed by identifying possible alternate routes 
between the origin and destination. This is accomplished using an enhanced version of 
the Breath First Search Link Elimination (BFS-LE) algorithm. The data assembled from 
the two steps, map matching and choice set generation, are then used for developing 
route choice using the path-size logit structure. The GPS data from the Chicago Travel 
Survey are used in this analysis. In addition to travel time, the number of intersections, 
turns, and the circuity of the route and the proportion of route by facility type were found 
to be statistically-significant predictors of route choice. In addition, the sensitivity to 
these factors also varied depending on trip purpose, time of the day of the trip, and 
traveler characteristics.  
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EXECUTIVE SUMMARY 

 
The advent of GPS-based travel surveys offers an opportunity to develop 

empirically-rich route-choice models. However, the GPS traces must first be mapped to 
the roadway network, map-matching, to identify the network-links actually traversed. In 
the study, two enhanced map-matching algorithms are implemented and compared for 
their operational performance using data from a large-scale GPS survey. Once the 
traversed path is determined, the next step is to determine the other options (routes), 
choice set generation, that were available to the traveler for making the trip. For this, the 
enhanced version of the Breath First Search Link Elimination (BFS-LE) algorithm is 
implemented. The data assembled from the two steps, map matching and choice set 
generation, are then used for developing route choice.  

The primary source of data for this study is the GPS component (in-vehicle GPS 
data only) of the Chicago Regional Household Travel Inventory (CRHTI). In this survey, 
a GPS data-logging device (GeoLogger) was used to record the date, time, latitude, 
longitude, speed, heading, altitude, number of satellites, and horizontal dilution of 
precision (HDOP) at 1-second intervals. Original data comprises of GPS streams for 
9941 auto trips made by 408 household vehicles. After eliminating trips shorter than 5 
minutes in duration and 2 miles in distance, the sample consists of 5294 auto trips. 
However, the trips with unique OD pairs were retained for the final sample. The two 
map-matching algorithms generated routes for 3885 trips. After mapping the person 
demographics and trip characteristics, the sample comprised of 2850 trips. However, 
with available computational resources and time, choice sets were generated for 2143 
trips. Further, 1913 trips which had at-least 15 alternatives in the choice set were 
included for the model estimations. 

The Path Size Logit (PSL) model is used for developing models for route choice. 
The PSL models are developed for three different choice set sizes (15 alternatives, 10 
alternatives, and 5 alternatives). The utility functions are expressed in terms of route 
attributes, trip characteristics and traveler characteristics. The estimation results 
indicate intuitive effects. Specifically, free-flow travel time, left turns, right turns, 
intersections, and circuity were found negatively associated with the attractiveness of a 
route. A positive sign on the path size attribute indicates that the route with less 
similarity with the alternatives is more likely to be chosen. Trips going to home are the 
least sensitive to the travel time and right turns than the other trips. Compared to home-
based trips, non-home-based trips are less sensitive to intersections and time on local 
roads. On average, the expected overlaps (probabilistic routes) with the chosen route 
are similar to the deterministic overlaps (shortest time path). Also, there is a probability 
of about 50% that the predicted route will outperform the shortest time path. 
 We envision this study as an important contribution towards the development of 
empirically rich route choice models. With increasing numbers of GPS surveys and 
benefits of using high-resolution roadway network, the availability of computationally 
efficient automatic procedures to generate the chosen routes and alternatives is critical. 
Further, the examination of route choice behavior in terms of travelersô demographics 
provides more insight into the route choice decisions. 
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CHAPTER 1 
INTRODUCTION 

 
Understanding the travelersô choice of routes is critical in determining the volume 

of traffic (level of congestion) on the different links of the roadway network. One of the 
important impediments to studying route-choice behavior is that the data on actual 
routes chosen are never collected in conventional household travel-surveys. Arguably, 
the primary reason for the lack of such data is that routes cannot be easily reported in 
the Computer-Assisted-Telephone-Interview (CATI) methods used for data collection. 
As a consequence of this lack of data, route-choices are predicted assuming that 
travelers choose the shortest-travel time paths for their trips. While travel time is a very 
important factor that determines the choice of route, it is reasonable to expect that it is 
not the only factor considered by travelers in their route-choice decisions (see for 
example, Li et al., 2006 and Papinski and Scott, 2011a). The advent of Geographic 
Position Systems (GPS)-based travel surveys now provides an approach to trace 
vehicle movements and, hence, collect data on the actual routes chosen for various 
trips. 

The efforts on the empirical modeling of route choices using GPS traces are 
recent and growing in number (see for instance, Schussler, 2009 and Hood et al., 
2010). This is probably because the number of GPS-based travel surveys has 
increased quite substantially only in the last decade (consequently some of the past 
route-choice studies have relied on synthetic data or other sources such as travelersô 
self-description of routes). Further, several of the methodological developments relevant 
to modeling route choices from GPS-based travel surveys are relatively recent. 

In this context, the broad focus of this research is to combine data from GPS-
based travel surveys and Geographic Information Systems (GIS)-based roadway 
network databases to develop models for route-choice. There are three main 
components to the overall approach: (1) Map Matching, (2) Choice Set Generation, and 
(3) Route Choice Models. 

Map matching is the process of identifying the specific links of the roadway 
traversed by a vehicle by mapping the points from its GPS trace to an underlying GIS-
based roadway network database. This step is critical as it identifies the fundamental 
ñchoiceò (i.e., the route) of interest. In this study, two map-matching algorithms from the 
literature are enhanced, implemented, compared, and validated. Both these algorithms 
include systematic treatment for missing GPS points along the routes; employ efficient 
techniques to address computational time; and are almost entirely automated. 

Once the ñchosenò path has been identified, the next step is to determine the other 
options (routes) that were available to the traveler for making the same trip. This 
process is called choice-set generation. Since the surveys do not directly query the 
respondents on alternate options available to them, the choice set is generally 
constructed by considering the network topology and the trip-end locations. In this 
study, and enhanced version of the link-elimination approach to generating the choice 
set is used. The procedure is shown to generate heterogeneous alternatives which are 
also generally inclusive of a significant proportion of the chosen route.   

After assembling the data of the chosen routes and corresponding choice sets, 
route choice models are developed to examine the route choice behavior. In this study, 
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the path-size logit approach is used. The explanatory factors include route attributes 
(such as travel times, numbers of turns, and number of intersections), trip attributes 
(time of the day, day of the week, home-based versus non-home-based), and traveler 
attributes (gender, length of stay at current residence, etc).    

The rest of this document is organized as follows. Chapter 2 presents a review of 
the studies related to map matching, choice set generation, route choice models. 
Chapter 3 describes the map-matching algorithms used for generating observed routes. 
Both conceptual and implementation details are presented in the chapter. Chapter 4 
presents a validation of the map-matching algorithm, and subsequently, the results of 
the application on a large dataset are discussed. Chapter 5 provides the assembly 
process of the estimation dataset. The conceptual framework of the choice set 
generation algorithm is also presented in the chapter. At the end, data descriptive are 
presented. Chapter 6 presents the route choice models developed in the study and 
discusses the estimation results. In the end, Chapter 7 presents the summary and 
conclusions of the study. 
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CHAPTER 2 
LITERATURE REVIEW 

While GPS-based travel-surveys collect data on vehicle trajectories, these data 
have to be processed substantially to be transformed into a format that can be used for 
model estimations.  There are two major steps in this processing: Map Matching and 
Choice Set Generation. Map matching matches a stream of GPS points to a roadway-
network database to identify the traversed links in the chosen route. Once the chosen 
route is determined, choice-set generation methods are used to determine possible 
alternatives that could have been considered by the decision maker. The data on the 
chosen route and the choice alternatives are then merged with other available 
information such as trip- and traveler- characteristics for model estimations.  

The next three sections provide a review of the existing studies in the areas of 
map matching, choice-set generation and route choice modeling. A tabular list of 
studies is presented in Appendix A. The reader is also referred to Dhakar (2012) for 
further discussions. Each section ends with a short discussion of the contribution of this 
study. 

2.1 Map Matching 
Based on a review of the literature, there are two broad classes of algorithms for 

map matching (off-line map matching of high-frequency GPS streams): The GPS-
weighted shortest-path algorithms (GWSP) and the multi path algorithms (MP).  

Zhou and Golledge (2006) suggested that offline algorithms use optimization 
techniques such as the shortest path to generate a topologically-correct route and to 
exploit roadway attributes, such as speed limits, one-way streets for better accuracy. 
These suggestions are also in line with the work undertaken by Du (2005) who 
proposed a method that predicts the chosen route by determining the shortest path 
satisfying network topology such as link location, connectivity, one-ways, and allowable 
u-turns. The method was implemented in ArcGIS and examined against 674 trips 
collected on 18 known routes of Lexington, KY. For a known OD pair, approximately 
95% of the routes were constructed entirely. However, high computational times and 
manual interventions are also characteristic features of this study.  

In a recent study, Griffin et al (2011) demonstrated another way to use shortest 
path for path creation. First, an initial route was obtained by inputting selected GPS 
points to a driving directions (DD) service, offered by web service providers such as 
MapQuest, Yahoo, and Google. The DD service calculates the shortest cost path for the 
input GPS points. After obtaining the initial route, problematic waypoints were identified 
using a set of rules that includes point distance, bearing, path ratio, and duplicate 
points. The revised set of waypoints was then resubmitted to DD services and a correct 
map-matched route was obtained. Algorithm was tested against a real world GPS data 
for 200 routes and a visual inspection of the routes confirmed an accuracy of 100%. 
However, the method involved spending a large amount of time in identifying 
problematic routes manually.  

Similar drawbacks (manual methods for correcting for map matching errors) were 
observed in the method used by Spissu et al (2011). First, a spatial join was used to 
match the GPS points to the corresponding routes, and afterwards a manual inspection 
corrected the matching errors. The method was run for 697 trips and it found routes only 
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for 58% of the trips. Unmatched trips were due to missing GPS points, inconsistent 
activity data and missing links in the roadway network. 

To improve the efficiency of a map-matching process Marchal et al. (2005) 
proposed an algorithm that uses a multiple hypothesis technique (MHT), which was first 
introduced by Pyo et al. (2001) for the application of on-line map-matching. The MHT 
stores multiple paths during the process and in the end selects a path with the best 
score.  

Marchal et al. (2005) calculated a ñlink scoreò by determining the distance of the 
link to the GPS point. The algorithm starts with finding a set of links that are closest to 
the first GPS point. For each link, a new path is created and links are inserted with their 
scores assigned to the respective paths. GPS points are processed in order (time 
sequence) and a path score is updated by adding the score of the last added link to its 
previous score. When the end of a link is reached, a copy of the path is created for each 
outgoing link and then the path is removed from the set of paths. In the end, the path (in 
the set of paths) with the lowest score is selected as the traversed path. Algorithm limits 
number of paths in a set to 30. Algorithmôs efficiency was not evaluated in terms of 
correctly identified links; instead focus was given to the operational performance using a 
real world data of 84 paths collected in the Zurich area. The authors argued that the 
accuracy and the running time are dependent on the maximum number of candidate 
links/ paths stored in the set. However, the algorithm couldnôt produce continuous 
routes in most cases, which the authors reasoned are because of irregular GPS 
streams caused by tunnels, tree canopies, poor signal, and so forth. As a result, a 
sequence of paths was generated instead of a continuous route. The authors also 
added that algorithm is sensitive to outliers in GPS data.  

Schüssler and Axhausen (2009) modified the original algorithm by Marchal et al. 
(2005) to overcome their limitation of not producing a continuous route. Additionally, a 
modified method was used to calculate a score. First, they subdivided each trip into 
continuous segments depending on the gaps in GPS streams. Afterwards, they created 
the trip segments by using the algorithm by Marchal et al. (2005). Then, a complete trip 
was obtained by connecting trip segments through a shortest path search with a 
treatment for low quality map matching results. During the study, 3932 car trips 
encompassing 2.4 million GPS tracks were matched to a high resolution Swiss 
NAVTEQ roadway network. The results showed a smaller number of matched routes in 
comparison to the total routes. Further investigation of the results showed three main 
reasons for such low numbers of matched routes: missing links in the roadway network, 
off-network travel, and u-turns. Menghini et al. (2010) applied the algorithm, developed 
by Schüssler and Axhausen (2009), to match 320, 576 GPS points of 3387 bike trips, 
also extracted from the same data source. However, they encountered errors for cases 
of missing good point flow and a dense scatter of points.  

Zhu and Golledge (2006) used the MHT with rank aggregation and proposed a 
three-step map-matching algorithm. Prior to the map matching, GPS data was 
processed for cluster reduction and density leverage. After map matching results, a 
Dempster belief test was used to detect the noise and off-road travel. A combination of 
accumulated 2-norm distance and rotational variation metric was used to decide the 
rankings of the candidate paths. The author did not apply the algorithm to real world 
data. 
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In summary, the GWSP algorithm directly uses the concept of shortest path in 
determining the route.  However, the links that are not close to observed GPS points are 
provided higher impedances (making them less likely to be included in the shortest 
path) than the links that are near observed GPS points (these links have the true travel 
times/costs as impedances). The MP algorithm does not use the concept of shortest 
paths; rather, it traces though the stream of GPS points identifying all the possible 
routes to reach the destination from the origin. 

The GWSP algorithm is more straightforward and computationally less-demanding 
(especially if a tool for calculating shortest-paths is available) whereas the MP algorithm 
is more elaborate and demanding (the need to store multiple paths can get 
cumbersome with dense networks). However, the latter algorithm is also free from 
assumptions such as preference for shortest paths and generally uses the observed 
data to determine the route. A comparative analysis of these approaches would 
therefore be of interest and this study contributes towards that end. Enhanced versions 
of both GWSP and MP algorithms are implemented and compared. The enhancements 
are aimed at achieving complete automation and better operational performance. Both 
algorithms are implemented in ArcObject within ArcGIS framework, using Python and 
Visual Basic Application (VBA). 

 
2.2 Choice Set Generation 

Once the chosen route has been determined, the next step is to determine the set 
of alternate paths available for the same trip. The universal choice set contains all 
possible paths between an OD pair. However, it is impossible for a traveler to be aware 
of all the paths in the universal choice set. Further, this universal choice set would 
contain high number of unattractive and unrealistic routes that a traveler would never 
consider during the decision-making. The inclusion of these unrealistic routes in a 
choice set would put an extra burden on computation time and also affect the model 
estimations. Therefore, a ñconsiderationò choice set is defined as a subset of the 
universal choice set and contains only feasible and attractive paths. Bovy (2009) 
defined this choice set as the collection of travel options perceived as available by 
individual travelers in satisfying their travel demand. Since the surveys do not directly 
ask the respondents to provide information on the options available/considered, the 
choice sets have to be determined using the roadway network characteristics and 
reasonable behavioral rules. Various restrictions are applied to ensure that the number 
of options in the choice set is reasonable and the options themselves are somewhat 
different from each other.  
 In general, the choice-set generation approaches can be classified into three 
categories: (1) shortest path based methods, (2) constrained enumeration methods, and 
(3) probabilistic methods  
 
Shortest-path based methods 

Shortest-path based approaches are the most popular and commonly used 
methods in the literature. For a given generalized cost, this method repeatedly searches 
for the alternate shortest-cost path in the network. The search for the shortest path can 
be approached in two ways: deterministic and stochastic. 



 
 

15 
 

Deterministic shortest-path based methods: The popular algorithms in the 
deterministic shortest-path based methods include k-shortest path, labeling, link 
elimination, and link penalty.  

K-shortest path algorithms extend the idea of calculating a single shortest path 
(e.g. Dijkstra, 1959) to determine k-shortest paths using a generalized link cost function. 
Recently, Papinski and Scott (2011b) generated choice sets by calculating 9 shortest-
time paths for a GPS dataset of 237 home-based work trips collected for auto drivers in 
Halifax, Nova Scotia, Canada. Spissu et al. (2011) calculated 10 minimum-cost paths 
using cost functions from the existing Cagliari model. Over the years, researchers have 
introduced several variations to the basic approach of finding k-shortest paths while 
maintaining the same computational efficiency. Kuby et al. (1997) construct the choice 
sets by, iteratively, selecting routes from a subset of k-shortest paths that satisfy a 
similarity measure, whereas Van der Zijpp and Fieorenzo-Catalano (2005) find feasible 
paths satisfying some behavioral constraints.  

Instead of calculating multiple shortest paths for one cost, the labeling approach 
finds one optimal path for each of several costs or attributes (labels). The number of 
paths in a choice set is equal to the number of labels considered. Ben-Akiva et al. 
(1984) proposed this approach and generated routes for 10 labels ( time, distance, 
scenic, signals, capacity, hierarchical travel pattern, quality of pavement, commercial 
development, highway distance, and congestion). Routes with only two labels, time and 
distance, replicated 70% of the chosen routes and routes with all labels together 
replicated 90% of the chosen routes. The study found that signals are not a significant 
factor and concluded that factors other than time and distance do play a significant role 
in route choice. Ramming (2002) used more attributes (e.g. time in secure 
neighborhood, tolls, left turns, free flow time), totaling 16 labels, to generate paths for 
188 observations (91 OD pairs) collected through a web-based survey of faculty and 
staff of Massachusetts Institute of Technology (MIT), Boston. For 236 trips (182 OD 
pairs) from another web-based survey conducted in Turin, Italy, Prato and Bekhor 
(2006) (also Prato and Bekhor, 2007) determined paths by using 4 labels ï distance, 
free-flow time, travel time, and delay. Bekhor and Prato (2009) compared the two 
datasets, Boston and Turin, by using labeling approach with 5 labels: distance, free-flow 
time, delay, traffic lights, and traffic lights. Quattrone and Vieteatta, 2011 examined data 
from a road-side survey of truck drivers and generated 30 routes for each of  5 costs: 
minimum travel time, minimum monetary cost, maximum motorway route, minimum 
bridges and viaducts, minimum routes with high levels of accidents. The generated 
routes overlap 75% of the observed routes. 

Link elimination approaches, presented by Azevedo et al. (1993), iteratively search 
for the next best path by removing one or more links from the shortest cost path. Bekhor 
at el. (2006), Prato and Bekhor (2006), Frejinger and Bierlaire (2007) calculated multiple 
alternate paths by using 50, 10 and 15 iterations respectively. Using this approach, 
Ramming (2002) obtained up to 49 unique routes. Schussler et al. (2012) proposed a 
variation to the approach, called as breadth-first search link elimination (BFS-LE). It 
starts with calculating a shortest cost path between origin and destination and searches 
for the next shortest path by removing links. The resulting shortest paths are set as the 
starting points, nodes, for next iteration, depth, of link elimination. All nodes at a depth 
are processed before moving to the next depth. They also proposed two performance 
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optimization methods: a randomization of links at a depth and a roadway topology 
simplification. More details of the method are provided in the methodology section. 
Menghini et al. (2010) implemented the BFS-LE approach for route choice of cyclists in 
Zurich, Switzerland. 

Link penalty approaches, introduced by De la Barra et al. (1993), also iteratively 
determines multiple shortest paths. However, instead of removing links a penalty is 
imposed on impedances of the links in the current shortest path. Studies have used 
several methods of determining link penalties. Park and Rilett (1997) increased 
penalties only to the links that are outside a certain distance from the origin and 
destination of a trip. The variation resulted in less similar and more relevant routes. 
Scott et al. (1997) incorporated an optimization program to determining the penalty 
factor. Bekhor et al. (2006) defined penalty as the function of distance between origin 
and destination, therefore, introducing higher penalty for longer routes. Prato and 
Bekhor (2007) used a fixed penalty factor and iterated the process 15 times.  

 
Stochastic shortest-path based: These approaches assume that the path costs 

are not deterministic and travelersô observe the costs with error. Also called as the 
simulation approach the error is represented by drawing generalized cost functions from 
probability distributions. Ramming (2002) analyzed home to work commute and 
extracted 48 draws from a Gaussian distribution with mean and standard deviations to 
equal to link travel times. Beirlaire and Frejinger (2005) extracted 20 draws from a 
truncated normal distribution with mean and variance equal to link travel times from the 
observed data. Average choice set size was 9.3 with maximum and minimum 22 and 2 
routes respectively. Prato and Bekhor (2006), Prato and Bekhor (2007), and Bekhor and 
Prato (2009) implemented two simulation approaches exploiting the same procedure to 
draw impedances. Twenty-five and 35 draws were extracted from a truncated normal 
distribution with mean equal to travel time and variance equal to a percentage of the 
mean, 20% and 100% respectively. Left truncation limit was set equal to the free-flow 
time and right truncation limit was equal to the travel time calculated for a minimum 
speed assumed equal to 10 km/hr. Schussler et al. (2012) draw impedances from a 
truncated normal distribution with mean equal to travel time and standard deviations 
equal to different multiples of travel time. The Doubly stochastic method, proposed by 
Bovy and Fiorenzo-Catalano (2007), is an extension to the simulation approach where 
generalized cost functions are in the form of utilities with both the parameters and the 
attributes are stochastic. Clearly, the use of stochastic shortest path methods requires 
information on the (perceived and real) variability of travel times on the roadway 
network, which may not always be readily available. 
 
Constrained enumeration methods 

Constrained enumeration methods construct choice sets using a set of constraints 
that reflect cognitive, perceptual, behavioral assumptions. Pillat et al. (2011) proposed a 
method with path enumeration and branch-cutting criteria. The method included a 
commonly-factor criteria within the generation process to keep the choice set size 
computable and to avoid routes with higher detour factors. The commonly factor (CF) 
calculates the overlap between two routes in terms of distance and is calculated as 

#& , ,,ϳ . Where ,is the common distance of route É and route Ê; ,is the distance 
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of route É and ,is the distance of route Ê. For the route tree, origin is the source of tree 

and branches are the routes in the network. Branch-cutting criteria are used to control 
detour factors in the route and checked for every new node added as a branch element 
to the route tree. Parameters of the allowed impedance functions, used to apply detour 
factors, were estimated using the information on known alternative routes collected 
during the survey. The final choice set produced reasonable routes and replicated 60% 
of the observed routes which authors considered promising given the uniqueness of the 
trip observations. Prato and Bekhor (2006) introduced Branch and Bound algorithm that 
enumerates paths by constructing a tree connecting origin and destination of a trip. A 
set of constraints, such as directional, temporal, loop, similarity, and left turn are 
satisfied while processing sequence of links to generate the tree. Friedrich et al. (2001) 
and Hoogendoorn-Lanser (2005) applied the branch and bound method for transit 
network and multimodal network context respectively. Bekhor and Prato (2009) also 
used the approach for his comparative study of two datasets: MIT, Boston and Turin, 
Italy. 
 
Probabilistic methods 

In contrast to the deterministic methods, where an alternative either belongs to a 
choice set or not, probabilistic methods, first proposed by Manski (1977), also represent 
intermediate availabilities by assigning perceived probabilities to routes. This set of 
approaches relies on the assumption that all routes connecting origin and destination 
belong to the choice set to some degree. 

 Cascetta and Papola (2001) construct fuzzy choice sets with the proposed Implicit 
Availability/ Perception (IAP) model that represents alternativeôs availability/membership 
in terms of continuous values ranging from 0 to 1. Ramming (2002) applied IAP logit 
with variables related to network knowledge but obtained results were not satisfactory. 
Frenjinger (2007) and Frejinger et al. (2009) extract a subset of paths with importance 
sampling approach, which selects attractive alternatives with higher probability. For an 
OD pair, the probability of each link in the network is calculated based on its deviation 
from the actual shortest path. Therefore, links on the actual shortest path have a link 
probability of 1 and other links between 0 and 1. Next, a repeated random walk method, 
starting at the origin, selects and adds links from node to node until destination is 
reached. The link selection process at a node is determined by the associated next 
linksô probabilities. This approach was applied to a synthetic network with 38 nodes and 
64 links and positive results were obtained confirming the superiority of models with 
sampling corrections than others with no correction. 

 
The discussion thus far focused on methods to generate alternate paths. Next we 

focus on metrics used to assess the quality of the generate choice-sets. Different 
guidelines are used to assess the structure and quality of the generated choice set or 
the effectiveness of an algorithm. Typically, choice set size (Richardson, 1982; Prato 
and Bekhor, 2006) and coverage of the observed routes are used to evaluate the choice 
set composition. Bekhor et al. (2006) define coverage as the share of observations for 
which an algorithm produced a route that meets a particular threshold of overlap. 
Where, the overlap is usually the percentage of the observed route distance. In addition 
to coverage, Prato and Bekhor (2007) and Prato and Bekhor (2007) calculated a 
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consistency index that compares a choice set generation method with the ideal 
algorithm that would reproduce all the observed routes. Schussler et al. (2012) used 
four measures to assess the structure of the choice set: choice set size, reproduction of 
the observed route (coverage), route diversity, and hierarchical sequence. The route 
diversity determines how different the routes are in the choice set. Two indicators are 
used for the measure: overlap among the routes and distribution of the route distances. 
The hierarchical sequence focuses on the shares and sequences of the road types. 

 
A number of studies have compared choice-set generation methods in terms of 

computational performance and efficiency.  
Papinski and Scott (2011b) compared two choice set generation algorithms using 

a sample of 237 home based work trips. The first algorithm is a constrained 
enumeration method. A potential path area (PPA) was defined for an OD pair. Nine links 
were randomly selected as the midpoints for each alternate route within the PPA. For 
each midpoint link, a shortest path based on time is found through from the origin 
(home) to midpoint link to destination (work). The second algorithm (k-shortest path) 
calculates nine shortest time paths for an OD pair. Constrained enumeration method 
performed better than the k-shortest path, thus emphasizing the fact that travelersô route 
choice do not depend only on the travel time. 

Ramming (2002) (also, Bekhor et al., 2006) examined four choice set generation 
algorithms: labeling, link elimination, link penalty, and simulation. Computational time for 
link penalty approach was high considering the small number of routes generated in the 
choice set (also, see Prato and Bekhor, 2007). The high computation time was a result 
of rewriting the changes the link impedances back to the network. However, as Prato 
(2009) stated, in link penalty approaches, the value of penalty factor plays a crucial part. 
While low penalty may result in very similar routes, high penalty may produce 
undesirable routes. For link elimination, Ramming (2002) was not convinced that 
removal of ñone linkò at a time would produce quality choice sets. Prato (2009) also 
agreed with it, and pointed out that the major shortcoming of the link elimination is the 
network disconnection, as removing centroid connectors and major crossing does not 
promise a new route between origin and destination. Also, removing a link, generally, 
introduces only a short deviation from the previous route and the generated routes are 
somewhat similar. Ramming (2002) found that labeling approach was the fastest and 
three labels ï distance, free-flow time, and time ï provided enough coverage. 
Simulation approach, 48 draws from a Gaussian distribution, was easy to implement 
and showed acceptable computational performance. The final choice sets were 
constructed by merging routes from the labeling (distance, free-flow time and time) and 
simulation approach. The final choice sets consist of maximum 51 routes and a median 
size of 30 routes. 

Prato and Bekhor (2006) (also, Bekhor and Prato, 2009, and Prato and Bekhor, 
2007) expanded the comparison by Ramming (2002) with an inclusion of branch and 
bound approach. Among all the algorithms, branch and bound showed higher 
consistency index (97.1%) and coverage (up to 97%). Therefore, two choice sets were 
constructed during the study; first, merging routes from different algorithm, and second, 
routes from branch and bound algorithm. First choice set contained maximum of 55 
routes with median size of 32 routes. Second choice set contained maximum of 44 
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routes with median size of 17 routes. Comparison of two choice sets indicated a better 
performance and more heterogeneous routes from branch and bound approach. 

Based on the recommendations of previous studies, Schussler et al. (2012) 
selected three algorithms that have performed well and promised to produce realistic 
routes: stochastic, branch and bound (BB), and constrained random walk (CRW). 
Additionally, they proposed a breadth first search link elimination (BFS-LE). Before, 
implementing the BFS-LE approach, they compared the computational performances of 
the four algorithms on a smaller sample of 500 OD pairs, representative of the main 
sample. BB and CRW demonstrated long computational times even for small 
alternatives and short paths. Each of the two algorithms was run for 17 days with a 
processing time limit of 90 minutes per OD pair. During the time limit, BB couldnôt find 
any route for 229 OD pairs and for 161 OD pairs it found only one route. However, CRW 
found at-least 5 routes for 466 OD pairs. High computation times and smaller choice set 
sizes discourage the use of these algorithms for the application of high-resolution 
networks. Similar concerns were raised by Prato (2009), who observed that the 
computational performance of the branch and bound approach highly depends on the 
depth of the tree and thus, on number of links in the paths. With this, the author 
anticipated that the application of the algorithm would be limited to small networks. The 
author also suggested that the routes generated with random walks approach may be 
very circuitous, contain loops and extremely long since they do not reach the destination 
in a reasonable number of stops, thus not making the method suitable for estimation 
and prediction purposes. 

During the study by Schussler et al. (2012), stochastic and BFS-LE methods 
showed considerably better results in terms of computation time and number of 
alternatives. The two algorithms, stochastic and BFS-LE, constructed the choice sets for 
500 OD pairs in 12 days and 7.1 days respectively. The authors further compared the 
computational efficiency of these two methods and found that, on average, computation 
time for stochastic method was 32 times higher than the BFS-LE method. As pointed 
out by Prato (2009), efficiency of stochastic/ simulation approach depends on the 
selection of probability function and number of draws. The popular distribution includes 
normal, log-normal, gamma etc. Perceived cost being non-negative results in truncating 
negative draws in the normal distribution. However, truncation may lead to biases 
towards certain routes (Nielsen, 2000). Log-normal and gamma distributions guarantee 
non-negative draws (Nielsen and Frederiksen, 2006), and thus preferred. Higher 
number of draws results in increasing computation cost considerably, and do not 
necessarily generate higher unique routes (Ramming, 2002). Prato and Bekhor (2006) 
experimented with number of draws and variance of the distribution. They found that 
both low and high variances are not efficient as former results in fewer unique paths and 
later produces several unrealistic paths. 

Prato (2009) also highlights the shortcomings of the doubly stochastic method in 
the calibration of the probability function coefficients and indicated that the use of 
incorrect values could lead to unrealistic routes. 

Schussler et al. (2012) observed that the percentage of reproduced chosen routes 
from BFS-LE was higher than the results of the simple link elimination method, 
presented in the studies by Ramming (2002) and Prato and Bekhor (2007). The authors 
argued that for high-resolution networks repeated shortest path search algorithms are 
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more feasible and perform the best. The proposed BFS-LE method produced better 
results than the basic link elimination method and outperforms the stochastic method in 
terms of computational efficiency.  

Based on the discussion so far and the nature of our dataset, we decided to 
implement an enhanced version of the BFS-LE algorithm to generate choice sets for 
large number of trips in a high-resolution network. The enhancements aim to address 
computational efficiency and the need to generate heterogeneous routes. Specifically, 
only those links that are likely to lead to a ñdifferentò route alternative when removed are 
considered for elimination. It is also ensured that any new route generated does not 
substantially overlap with any of the route alternatives already generated. The algorithm 
is applied to generate route-alternatives for over 2000 trips on the dense Chicago 
roadway network.  

 
2.3 Route Choice Models 

 

The random utility discrete-choice models are the most commonly used approach 
for analyzing route-choice decisions. Such models assume that the utility of an 
alternative consists of two components: deterministic and stochastic. Specifically, the 

utility of alternative Ὥ in the choice set ὅ perceived by individual ὲ is give by:  
Ὗ ὠ ‐  

 

Where, 6  is the deterministic or observed component, and ʀ  is the stochastic or 
unobserved component. 

For choice modeling, logit-based models are most commonly used. Among the 
family of logit models, the Multinomial Logit Model (MNL) is the simplest one. For the 

MNL model, the probability of choosing an alternative É in choice set # is given by: 

ὖὭȾὅ
ÅØÐ ὠ

В ÅØÐ ὠ
 

The MNL model is based on the assumption of Irrelevance of Independent 
Alternatives (IIA), and therefore, does not consider the similarities between alternatives. 
The similarity of a route with other alternatives may affect the utility of choosing the 
route and is needed to be accounted in the choice models to have a more realistic 
representation of the travel behavior.  

Several models have been proposed in the literature to overcome the limitation of 
the MNL model. The next section presents a brief description of such models (for further 
discussions, refer to Prato, 2009). 

The computational benefits of the simple, closed-form MNL model structure have 
encouraged researchers to propose MNL modifications to capture the similarities 
among routes. The modifications are either made in the deterministic or the stochastic 
part of the utility.  

 
Methods that modify the deterministic part of the utilities include the C-logit, the 

Path Size Logit (PSL), and the Path Size Correction Logit (PSCL) models. 
C-logit: C-logit model, proposed by Cascetta et al. (1996), was one of the first 

MNL modifications. The model introduced a term, commonly factor, in the deterministic 
part of the utility that measures the physical overlap of a route with other routes in the 
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choice set. The commonly factor (CF) reduces the utility of a route due to its similarity 

with other routes. The probability of choosing an alternative in choice set # is given by: 

ὖὭȾὅ
ÅØÐ ὠ  ὅzὊ

В ÅØÐ ὠ  ὅzὊ
 

Several formulations of CF are proposed in the literature (Cascetta et al., 1996, 
Cascetta et al., 2001): 
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Where, ὒ is the length of route i, ὒ is the length of route j, ὒ is the length of link l, 

ὒ  is the common length between route i and route j,  is a parameter to be estimated, 

and   is the link path incidence dummy, which is equal to 1 if route i uses link l and 0 
otherwise. 

Path size logit (PSL): Ben-Akiva and Bierlaire (1999) proposed the PSL model 
and measured the similarity using a Path Size term in the deterministic component. The 
path-size indicates the fraction of the path that constitutes a ñfullò alternative (Ben-Akiva 
and Bierlaire, 1999).  

ὖὭȾὅ
ÅØÐ ὠ  ÌzÎὖὛ

В ÅØÐ ὠ  ÌzÎὖὛ
 

Several formulations of the Path Size have been presented in the literature. 
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Where, ὒ is the length of route i, ὒ is the length of link l,  is a parameter to be 
estimated, and   is the link path incidence dummy, which is equal to 1 if route j uses 

link l and 0 otherwise. 
Frejinger et al. (2009) proposed Expanded PS (EPS), which includes an 

expansion factor to the PS attribute that corrects for the sampling: 
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Where, ήὮ is the sampling probability of path j, and Ὑ  is the number of 
alternatives (excluding the chosen route) drawn to form the choice set. 

Path size correction logit (PSCL): Bovy et al. (2008) argued that the PS attribute 
in the PSL model does not have a theoretical derivation and assumptions are not clearly 
stated either. In response, they proposed a Path Size Correction Logit (PSCL) model 
and presented a systematic derivation of the Path Size Correction term. 
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Where, ὒ is the length of route i, ὒ is the length of link l, and   is the link path 

incidence dummy, which is equal to 1 if route j uses link l and 0 otherwise.  
 
Models that account for similarities in the stochastic part of the utility (error 

correlations) while still maintaining a closed-form formula for probabilities fall in the 
family of Generalized Extreme Value (GEV) models. Such models include Paired 
Combinatorial Logit (PCL), Cross Nested Logit (CNL), and Generalized Nested Logit 
(GNL). 

Paired combinatorial logit (PCL): The model assumes that choice decisions 
are made from pair of alternatives in a choice set. Prashker and Bekhor (1998) provided 
a formulation of PCL model in route choice context: 
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Where, ὖὭȿὭὮ is the conditional probability of selecting route i provided that the 
pair (i,j) is chosen, ὖὭὮ is the unobserved probability of selecting the pair (i,j), and „  is 

the similarity coefficient between i and j. Two different formulations of the similarity 
coefficients are provided in the literature: by Prashker and Bekhor (1998), and by Gliebe 
et al. (1999). The two formulations are presented below in respective order: 
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Where, ὒ is the length of route i, ὒ is the length of route j, ὒ  is the common 

length of route i and route j, and  is a parameter to be estimated. 
Cross nested logit (CNL): The model assumes that choices are made within 

nests. In route choice context, the nests correspond to the links in the choice set 
(Prashker and Bekhor, 1998). Therefore, a route belongs to multiple nests. The choice 
probability is given by: 
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Where, ὖὭȿὯ is the conditional probability of selecting route i in nest k, ὖὯ is the 
unobserved probability of selecting the nest k   is the inclusion coefficient, ‘ is the 
nesting coefficient, ὒ is the length of nest k, ὒ is the length of route i, and   is the link 
path incidence dummy, which is equal to 1 if route i uses link k and 0 otherwise. 

Generalized nested logit (GNL): The model is a generalization of CNL model 
with the same formulation of inclusion coefficient but each nest has a different nesting 
coefficient. The formulation of the nesting coefficient is given by: 

‘ ρ
В 

В 
 

 Where,   is the inclusion coefficient,  is a parameter to be estimated, and   is 
the link path incidence dummy, which is equal to 1 if route l uses link k and 0 otherwise. 

 
Models that account for similarities in the stochastic part of the utility (error 

correlations without maintaining a closed-form formula for probabilities fall in the class of 
ñmixed modelsò. In these models, the error terms is represented with two components. 
One part accounts for correlation and heteroscedasticity, and the other is i.i.d. extreme 
value. Such models include mixed logit, and logit kernel with a factor analytic. 

Mixed logit model: The model, also known as logit kernel (LK), assumes 
random coefficients. The probability of choosing route i by individual n is computed by 
simulation and is given by: 

ὖὭȿὅ
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Where, D is the number of draws, and  is dth draw from the distribution of  . 

Different coefficient distributions used in the literature include uniform, normal, log-
normal, and gamma distributions. 

LK with a factor analytic: instead of assuming random coefficients, these 
models simply represent the error term with the components that accounts for 
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similarities. Bekhor et al. (2002) provides a model, LK models with a factor analytic, 
which assumes that the covariance of the path utilities is proportional to the length by 
which paths overlap. 

ὖὭȿὅ ɤὭȿ‒
ÅØÐ ‘ὢ ὊὝ‒

В ÅØÐ ‘ὢ ὊὝ‒
 

Where, F is the loading matrix, T is a diagonal matrix of covariance parameters, 

and ‒is a vector of standard normal variables 
A different approach of using LK model in route choice context was presented by 

Frejinger and Bierlaire (2007). They proposed an Error Component model, LK model 
with a Subnetwork, and captured the correlations among alternatives using a 
Subnetwork. The Subnetwork captures the similarities among alternatives for 
unobserved factors even if the alternatives are not spatially overlapped. The probability 
if calculated by simulation and is given by: 

ὖὭȿὅ
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Where, ‒ is dth draw from the distribution of  ‒  and D is the number of draws. 
 
Frejinger et al. (2009) compared two formulations of the PS attribute: original PS 

and expanded PS. The estimations, however using synthetic data, showed that the PSL 
model with expanded PS performs better than the original PSL model. Schussler and 
Axhausen (2010) compared different specifications of C-logit and PSL models for 
choice sets of different sizes and composition. The estimation dataset contained 1500 
observations collected from an on-person GPS survey in Zurich, Switzerland. 
Estimation results indicated that PSL model with road type specific Path Size attribute 
provides the best similarity treatment. Bekhor et al. (2006) compared the PSL model 
with CNL model using 159 home-to-work observations collected through a 
questionnaire survey of faculty and staff at MIT, Boston. The estimations indicated that 
the CNL model is an improvement over PSL model and a better fit than the MNL model. 

Bovy et al. (2008) estimated PSCL and PSL models for two datasets from different 
regions, Turin (228 observations) and Boston (181 observations). The estimation results 
suggested that the proposed PSCL model is a better-fit model than the PSL model. For 
the two models, predicted probabilities were also compared using a simple hypothetical 
network with 12 routes for a single OD pair. The results once again indicated the 
superiority of the PSCL model over PSL model.  The authors recommended using PSL 
and PSCL models when all the relevant routes are present in the choice set. 

Prato and Bekhor (2006) and Bliemer and Bovy (2008) compared different models 
from the families of logit and GEV models. Prato and Bekhor (2006) estimated MNL, C-
logit, PSL, GNL, CNL, and LNL models using 236 observations (182 different ODs) of 
home-to-work route choice decisions collected through a web-based survey in Turin, 
Italy. Bliemer and Bovy (2008) estimated MNL, C-logit, PSL, PSCL, PCL, and CNL for a 
simple hypothetical network of a single OD pair with 12 available routes. Both studies 
indicated that the CNL model captures the similarity better than other models and 
performed the best. However, Bliemer and Bovy (2008) also examined the impact of 
different choice set compositions and sizes on route choice probabilities, and found that 
none of the estimated models was robust. The models were found sensitive to the 
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presence of irrelevant routes in the choice sets. Also, the sensitivity was higher if the 
irrelevant route was more similar to the relevant routes in the choice set. 

Bekhor et al. (2002) estimated LK with a factor analytic structure, MNL and PSL 
models using a dataset of 159 home-to-work observations collected through a 
questionnaire survey of faculty and staff at MIT, Boston. The LK model performed better 
than the MNL and PSL models. The study by Prato and Bekhor (2007) also adopted LK 
model with a factor analytic structure for investigating the impact of choice set 
composition on model estimates. In all, they estimated and compared six route choice 
models: MNL, C-logit, PSL, GNL, and CNL. The study recommended to use MNL 
modified models for large number of alternatives and nested or LK models for small 
alternatives in the choice sets.   

Frejinger and Bierlaire (2007) showed an application of the error component model 
by using GPS data of 2978 observations (2170 OD pairs) collected in Borlange, 
Sweden and estimated five different specifications of Error Component model. The 
Subnetwork was constructed with 5 arbitrary chosen roads in the network. The results 
of the EC models were compared with the MNL and PSL models. Further, prediction 
performances of the models were also examined by randomly selecting 80% OD pairs 
for estimations and the rest for predicting choice probabilities. MNL and PSL models 
showed similar prediction performance, however, PSL resulted in a better fit for the 
estimated data. Bierlaire and Frjinger (2008) adopted the Error Component approach to 
demonstrate route choice modeling with network free data (GPS data, reported trips). 
They estimated the Error Component model for 780 observations collected via 
telephonic interviews in Switzerland. The Subnetwork was defined as consisting of all 
the main freeways in the roadway network of Switzerland. When compared with PSL 
model estimates, the Error Component model was found a better-fit model. Another 
empirical application of the Error Component Model was presented by Bekhor and Prato 
(2009). They also estimated MNL and PSL models to examine the methodology 
transferability in route choice modeling using two different datasets: Turin, and Boston. 
They advised to account similarities within the stochastic part of the utility, however, 
also warned that it would be more computationally expensive. 

 
 
Distance and travel time (free-flow or estimated) are the common explanatory 

variables used in utility functions. Numerous specifications of the travel time are used by 
the researchers. Prato and Bekhor (2006) and Prato and Bekhor (2007) specified travel 
times for experienced and inexperienced drivers and found that the experienced drivers 
are concerned about the travel time more than the in-experienced drivers. Schussler 
and Axhausen (2010) and Bierlaire and Frejinger (2008) used travel times on each road 
type, defined according to an existing hierarchy of roadway links. Schussler and 
Axhausen (2010) used the time-of-day dependent travel times, whereas Bierlaire and 
Frejinger (2008) created piecewise linear specifications of free-flow travel time. The 
corresponding proportions of the total travel time were also included in the utility 
functions. In addition to the free-flow travel time, Bekhor et al. (2002) and Bekhor et al. 
(2006) created a variable for time spent on government numbered routes. 

Some studies examined the effect of travel time delay on path utilities. For 
example, Bovy et al. (2008) and Bekhor and Prato (2009) included percent delay with 
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respect to the free-flow travel time and Bekhor et al. (2002) and Bekhor et al. (2006) 
included delays for three different income categories in the utility functions.  

Path utilities are also specified with dummy variables to capture the effect of 
landmarks (Prato and Bekhor, 2006; Prato and Bekhor, 2007), maximum average 
speed (Bovy et al., 2008; and Bekhor and Prato, 2009), least-distance and least time 
path (Bekhor et al. 2002; and Bekhor et al. 2006) on choosing a path. Prato and Bekhor 
(2006) and Prato and Bekhor (2007) believed that the behavioral variables (habit, time-
saving skills, and navigation abilities) are also determinant factors in path utilities. 
Frejinger and Bierlaire (2007) specified utility functions with some route attributes (effect 
of number of speed bumps and left turns on uncontrolled signals) as the explanatory 
variables. 

Based on the discussion so far, the PSL, CNL, and EC with Subnetwork models 
have shown good empirical performances in route choice modeling. The CNL and EC 
models consist of complex probability structures and require high computation time for 
model estimations (Bovy et al., 2008). Moreover, estimations with large number of 
observations generated from a high-resolution network would increase the computation 
time even more. Prato and Bekhor (2007) suggested using MNL modified models if 
large number of alternatives is present in the choice set. Among MNL modified models, 
PSL and PSCL models have produced good estimates. Although, PSL and PSCL 
models do not differ very much in terms of results (Bovy et al., 2008). The only 
difference between the two models is availability of a systematic derivation of PSCL 
model. 

To our knowledge, only a few empirical studies have used demographic 
characteristics as predictor variables (e.g., household income by Bekhor et al., 2002 
and Bekhor et al., 2006). Moreover, the use of a large-scale GPS dataset for route 
choice modeling is also recent and limited (only Bierlaire and Frejinger, 2008, and 
Schussler and Axhausen, 2010). Except for the study by Bierlaire and Frejinger (2008), 
predictive assessments of the model on non-synthetic data are also limited.  

In our study, we adopt the PSL model with the original PS formulation proposed by 
Ben-Akiva and Bierlaire (1999). The original PS formulation has shown the best 
empirical performance (Frejinger and Bierlaire, 2007). The model estimations are 
performed for a large GPS dataset containing 1913 observations. In addition to the 
several route attributes, trip- and traveler attributes are also included in the utility 
functions. The models are estimated using three choice-set sizes (5, 10, and 15 
alternatives). 
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CHAPTER 3 
MAP MATCHING ALGORITHMS 

 
The focus of this chapter is on Map Matching Algorithms. As already defined, map 

matching is the process of identifying the specific links of the roadway traversed by a 
vehicle by mapping the points from its GPS trace to an underlying GIS-based roadway 
network database. This step is critical as it identifies the fundamental ñchoiceò (i.e., the 
route) of interest.  

Based on a review of the literature, there are two broad classes of algorithms for 
map matching: The GPS-weighted shortest-path algorithm (GWSP) and the multi path 
algorithm (MP). The first uses the concept of shortest path in determining the route and 
is a computationally enhanced version of the approach proposed by Du (2005). The 
second is new multipath map-matching algorithm, which uses the concept of multiple 
paths proposed by Marchal et al. (2005) and also implemented by Schüssler and 
Axhausen (2009).  

The GWSP algorithm is more straightforward and computationally less-demanding 
(especially if a tool for calculating shortest-paths is available) whereas the MP algorithm 
is more elaborate and demanding (the need to store multiple paths can get 
cumbersome with dense networks). However, the latter algorithm is also free from 
assumptions such as preference for shortest paths and generally uses the observed 
data to determine the route. A comparative analysis of these approaches would 
therefore be of interest and this study contributes towards that end. Further, we 
enhance each of the two algorithms computationally and to achieve automation to the 
greatest extent possible. Both algorithms are implemented in ArcObject within ArcGIS 
framework, using Python and Visual Basic Application (VBA).    

Prior to the discussion of each of our implementations of the two map-matching 
algorithms, it is useful to outline a generic procedure employed to treat missing GPS 
points. Factors such as loss of signal while traveling in dense urban areas (canyon 
effect) can cause GPS points to be missing over parts of a trip. During the map-
matching procedure, such missing GPS points can lead to incompleteness in the final 
predicted routes and/or premature termination of the algorithm (for e.g. see Chung and 
Shalaby, 2005, Spissu et al., 2011, Marchal et al., 2005). In order to overcome such 
implementation issues, points are artificially added to the GPS traces at times when the 
true GPS recordings are missing. Given that the recording frequency of the GPS 
devices is known, the occurrence of missing points can be detected by simply 
comparing the time stamps of consecutive points. Whenever missing data are detected, 
additional points spaced 75 feet apart are added using a simple extrapolation from the 
previous known/extrapolated point. This treatment of missing GPS points is called ñTrip 
Smoothingò and implemented in Python. Overall the trip-smoothing procedure provides 
a definitive direction for the algorithm to proceed at locations with missing GPS points 
thereby reducing the possibility of a breakdown in the algorithm. The algorithms are 
applied on the processed GPS streams. It is useful to acknowledge that the trip-
smoothening based only on spatial extrapolation is a naïve procedure and that more-
sophisticated methods have also been proposed. However, we found that our simple 
procedure was adequate to ensure that the subsequent steps of the map-matching 
algorithms were implemented fully and effectively.  
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3.1 The GPS-Weighted Shortest-Path (GWSP) Algorithm 

The algorithm begins by extracting out a ñsub-networkò for each trip, which comprises of 
links in the general vicinity of the GPS points. A ñbuffer zoneò (of size 200 meters in this 
study) is created around each GPS point and all the links within this area are identified. 
The set of all links within the buffer zones of at least one of the GPS points in the trip 
comprises the sub-network. All subsequent processing is done on this sub-network 
instead of the entire roadway network.  
The next step identifies the links in the sub-network with high GPS counts. For this 
purpose, another ñbuffer zoneò of a smaller size (75 feet or 23 meters) is created around 
each GPS point.  The buffers are consolidated to form a polygon for the entire trip. After 
this, the links in the sub-roadway network that falls completely within the buffer polygon 
are selected. Since these represent the link likely to have been traversed by the trips, 
the impedances are retained to be the true travel times. For the remaining links in the 
sub-roadway network, the link costs are set to a high value (5000 times the link travel 
times).  
 
Finally, the shortest-path algorithm built into the ArcGIS software is called to determine 
the shortest-path for each trip. The use of the sub-roadway network and the assignment 
of high impedances to links without any GPS points, generally forces the shortest path 
algorithm to pick a route with links that have more GPS points.  
 
The implementation details of this algorithm are available in Dhakar (2012). 

 
3.2 The Multi Path (MP) Algorithm 

As in the case of the GWSP algorithm, the MP algorithm also begins by extracting out a 
ñsub-networkò for each trip, which comprises of links in the general vicinity of the GPS 
points. All subsequent processing is done on this sub-network instead of the entire 
roadway network.  
 The next step aims to identify the (sequential) set of links within the sub network 
that could have been potentially traversed by the trip. For this purpose, each GPS point 
is mapped to the nearest roadway link within the sub-network. In this process, every link 
in the sub-network could have been mapped to zero, one, or more GPS points. The set 
of links with at least one GPS point mapped to it constitutes the initial chosen route 
(ICR). The time stamp on the earliest (first) GPS point mapped to each link in the initial 
chosen route is determined. The links in the ICR, called the initial chosen links (ICL), 
are then sorted based on this time stamp so that the sequence of links in the initial 
chosen route reflects the general temporal trajectory of the trip.  
 The next step aims to identify the (sequential) set of nodes within the sub 
network that could have been potentially traversed by the trip. The set of nodes at the 
end of the ICL identified from the previous step constitutes the ñsegment nodesò (SN). 
Each segment node is then mapped to the nearest GPS point and its time stamp is 
extracted. The segment nodes are then sorted by the time stamp so that the sequence 
of nodes reflects the general temporal trajectory of the trip. The set of end nodes of the 
links in the sub-roadway network but not in the ICL, represents the ñlocal nodesò 
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(LN).The next step is the creation of the link-to-nodes and node-to-links incidence 
matrices separately for segment- and link- nodes.  
 The final (iterative) step identifies multiple possible paths between the origin and 
destination. The algorithm starts at the first segment node, also the one closest to the 
origin, and sequentially iterates through all the segment nodes (SN) in the list.  
At any segment node, the links originating from that node are found using the segment 
node-to-link matrix. The ñeligibleò links are then identified (the links that do not have a 
dead-end or do not re-trace the path; note that not all links are connected in the 
ñforwardò direction to other links because of the use of a sub-roadway network). The 
remaining links are disqualified from further analysis. Now the following process is 
applied iteratively for all eligible links at the segment node.  
 For each eligible link, a copy of the current route leading up to this node is 
created and subsequently the eligible link is added to this. The end node of the newly 
added link is then obtained from the link-to-nodes matrices. This new end node can 
either be a segment node or a local node. If it is a segment node, it is labeled as a ñright 
nodeò (something to be processed later on) and the algorithm proceeds to examine 
other eligible links from the segment node under consideration. However, if a local node 
is encountered at the other end of an eligible link, the algorithm processes it similar to 
the processing of the original segment node. Specifically, all the links at the local node 
are found by using the local node-to-links matrix. The links are then classified as eligible 
and disqualified. A new route is created for each eligible link. The algorithm continues to 
create more routes until all the new routes at the segment node are met with either a 
segment node or a dead end. With this, all possible paths from the current segment-
node have been identified and saved. The algorithm then proceeds to the next segment 
node. This is one of the ñright nodesò identified on a path leading from a previous 
segment node.  
 Once all segment nodes in the list of SN have been processed the algorithm has 
generated multiple possible routes for the trip. Among these, the one that has maximum 
number of GPS points is considered as the ñchosenò route. 
 
The implementation details of this algorithm are available in Dhakar (2012). 

 
3.3 Summary 

It is fairly evident that the MP algorithm is significantly more computationally 
intensive than the GWSP approach. Two innovations help enhance the operational 
performance. First, the multi-paths are constructed over a sub-network that comprises 
of roadway links in the general vicinity of the GPS points. This prevents the needs to 
store an excessive number of paths and ensures that, at any point in the algorithm, the 
paths being considered are fairly close to the overall chosen path. The use of ñsegment-
nodesò is the second enhancement. The earlier multipath algorithms (e.g. Marchal et al. 
2005; Schüssler and Axhausen, 2009) iterate through every GPS point in a stream (i.e., 
the possibility of alternate paths are explored at every GPS point). A high-frequency 
GPS stream can easily contain thousands of GPS points, thus making the process 
computationally intensive. The proposed algorithm iterates over segment nodes.  
Hence, the possibility of alternate paths is explored at only nodes along the roadway 
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links. Such nodes are much fewer compared to the number of GPS points, thereby 
improving computational efficiency.  
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CHAPTER 4 
EXPLORATORY ANALYSIS OF CHOSEN ROUTES 

The chapter presents the analysis that validates the two (multipath and shortest 
path-based) map-matching algorithms presented in the previous chapter. This is 
accomplished by performing local data collection and comparing the generated routes 
against ñtrueò routes. Subsequent to the small-scale validation exercise, the two 
algorithms were applied to data from a larger-scale GPS-based travel survey. The 
relative performances of the two algorithms are compared. Further, the routes 
determined from each of these algorithms are compared against the shortest-distance, 
and shortest-time paths for the same trip-end locations. 

 
4.1 Validation 

Prior to a large-scale application of the map-matching algorithms, it is important to 
validate these against true routes. Data collected from GPS-based travel surveys are 
inadequate for this purpose as the ñtrueò routes are not directly elicited in these surveys 
(only the GPS traces are passively obtained). Therefore, we performed our own in-
vehicle data collection in Orlando, Florida, USA, using the Geostatsô Geologger (the 
vehicle-based device used in the Chicago and several other GPS-based travel surveys 
nationwide). The reader is referred to the Chapter on Data for a brief description of the 
device and the data collection procedure. 

The GPS data were collected for about 33 trips (37,214 GPS points) with each trip 
being at-least 5 minutes in duration and 2 miles long. As the vehicle was driven on 
known routes, the routes from the map matching process were first verified manually 
and algorithm efficiency was subsequently evaluated in terms of the proportion of the 
true nodes, distance, and time replicated by the algorithms.  

For 26 out of the 33 trips, both methods generated routes (In the rest, the shortest-
path based algorithm did not generate a route ï these are discussed later). Table 4-1 
presents a summary of overlap measures for these trips and for each algorithm. The 
results indicate that both algorithms are able to replicate the true routes to a very large 
extent (overall, over 98% of the distance and time are replicated and over 95% of the 
nodes are replicated). The freeway only trips (>98% on freeway) are replicated almost 
100% by both algorithms. However, for trips with arterials and local streets over 96% of 
the distance and time are replicated. 

The primary reason for the inaccuracy with the MP algorithm was because of 
routes containing loops; the algorithm struggles to include a loop in the route. 
Additionally, the algorithm occasionally selects links that are closer to true links because 
they have higher GPS points. Also, both algorithms find a way if some links are missing 
in the network, thus selecting other links in the route. 

As already mentioned, there were 6 cases in which the shortest path did not 
generate a route (The multi-path algorithm generates the routes for all trips). Further, 
one trip had a significantly different route generated by the shortest path algorithm 
relative to the true route. A summary of these seven trips is presented in Table 4-2. 
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Table 4-1. Validation of the map-matching algorithms 

 True route Overlap from MP (%) Overlap from GWSP (%) 

 
Nodes 

Distance 
(Miles) 

Time 
(Minutes) 

Avg. 
Speed 

% Distance on 
expressway 

% Distance on  
arterial 

% Distance on 
local road 

Nodes Distance Time Nodes Distance Time 

(a
) 

F
re

e
w

a
y
 T

ri
p
s
 

74 29.7 34.38 74.47 100 0 0 100 100 100 100 100 100 

40 20.61 22.49 72.72 100 0 0 100 100 100 100 100 100 

68 26.21 30.78 69.82 98.51 1.49 0 100 100 100 100 100 100 

63 25.60 28.76 75.87 98.24 1.76 0 100 100 100 100 100 100 

37 24.63 26.87 78.25 100 0 0 100 100 100 100 100 100 

25 18.90 20.62 74.75 100 0 0 100 100 100 100 100 100 

60 15.62 17.04 73.84 100 0 0 100 100 100 100 100 100 

36 16.27 19.74 73.61 100 0 0 100 100 100 100 100 100 

26 13.57 14.8 64.8 100 0 0 100 100 100 100 100 100 

121 15.80 17.23 71.05 100 0 0 97.52 98.6 98.6 100 100 100 

40 17.18 18.74 68.69 100 0 0 100 100 100 100 100 100 

46 20.66 24.02 72.19 100 0 0 100 100 100 100 100 100 

48 17.28 18.85 73.18 100 0 0 100 100 100 100 100 100 

28 16.47 17.97 72.62 100 0 0 100 100 100 100 100 100 

Total 99.58 99.92 99.92 100 100 100 

        

(b
) 

A
rt

e
ri
a

l 
a
n

d
 L

o
c
a

l 
S

tr
e

e
ts

 T
ri
p

s
 

77 27 31.46 66.36 91.55 8.19 0.26 100 100 100 100 100 100 

104 5.12 6.81 37.06 14.98 78.91 6.11 100 100 100 77.66 79.51 82.98 

90 4.4 8.7 25.78 19.75 43.22 37.03 67.78 66.63 57.86 100 100 100 

145 9.65 13.69 36.04 70.79 7.25 21.96 96.97 96.58 97.55 100 100 100 

80 5.05 9.59 14.12 14.02 15.14 70.84 85.53 95.21 95.38 100 100 100 

166 10.48 17.23 32.36 35.22 32.90 31.88 89.16 90.04 89.4 100 100 100 

124 7.12 11.22 26.85 29.49 48.98 21.53 97.58 99.26 99.17 100 100 100 

76 11.52 15.45 52.42 66.77 32.27 0.96 98.68 99.24 98.3 100 100 100 

98 16.65 21.28 55.07 76.22 23.17 0.60 100 100 100 100 100 100 

34 17 26.64 67.13 95.64 0.00 4.36 100 100 100 100 100 100 

176 26.02 30.91 66.58 89.15 10.84 0.00 92.61 97.3 95.2 100 100 100 

78 6.90 9.52 44.26 0 72.46 27.54 89.47 90.13 82.46 89.47 90.13 82.46 

Total   92.93 96.86 95.17 97.48 98.82 98.60 
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Table 4-2. Troublesome trips for the GWSP method 

True route Overlap from MP (%) Overlap from GWSP (%) 

Nodes 
Distance 

(miles) 
Time 

(minutes) 
Avg. speed 

(mph) 
% Distance on 

expressway 
% Distance on  

arterial 
% Distance on 

local Roads 
Nodes Distance Time Nodes Distance Time 

55 13.82 15.09 81.2 99.94 0.00 0.06 100 100 100 Stop on the wrong side 

99 12.56 18.61 80.4 75.53 21.72 2.75 100 100 100 Missing links in network 

256 16.09 22.19 68.9 29.52 63.27 7.21 91.34 95.02 94.43 Missing links in network 

157 21.32 24.22 84.1 84.01 13.34 2.64 97.47 99.25 99.11 Missing links in network 

60 6.53 9.46 65.3 0.00 73.64 26.36 100 100 100 Missing links in network 

52 16.26 19.12 83.8 91.07 8.79 0.14 100 100 100 Missing links in network 

53 2.45 4.29 38.8 0.00 0.00 100.00 90.2 93.71 91.36 9.8 6.29 8.64 

 
 
 



 
 

34 
 

One of the major reasons for the failure of the GWSP algorithm is the absence of 
certain links in the roadway.  In one of such cases, as shown in Figure 4-1, the GWSP 
algorithm cannot find a route but the MP algorithm selects off-path links to complete a 
route. This suggests that the MP algorithm is less sensitive than the GWSP algorithm to 
the errors in the underlying roadway network in terms of generating a complete, feasible 
route for the trips. To overcome this issue, it would be necessary to pre-process the 
network GIS data and add any missing links.  

 

 
Figure 4-1. Missing links in the network ï example 1 (a) GPS tracks, and (b) MP route 

A second example with missing links in the roadway is presented in Figure 4-2. In 
this case, the GWSP method does find a route; however, this is much farther away from 
the true route relative to the route determined by the MP method. 
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Figure 4-2. Missing links in the network ï example 2 

 
A second reason leading to the failure of the GWSP method occurs when trip 

origin/destination is close to a divided roadway represented by two separate links in the 
GIS network. In this case, if the GPS points gets ñsnappedò to the link with the wrong 
directionality (i.e., the vehicle is moving one way but the points are ñcloserò to the 
opposite link), the algorithm fails. To overcome this issue, the algorithm has to be 
expanded to ensure that the GPS points are snapped to not just the nearest link but 
also to the one in which the direction of flow is consistent with the bearing of the GPS 
points. This extension is currently not accommodated in our algorithm.  

Finally, it is also interesting to note that the GWSP algorithm for trip 9 is very 
different from the true path which is also reasonably well detected by the MP algorithm. 
The schematic of this trip represented in Figure 4-3 quickly highlights why this is the 
case. For this trip, the two trip-ends are fairly close to each other spatially but the actual 
travel path included a much longer distance and a ñUò turn. Even though links that do 
not have a GPS point are assigned a very high impedance to prevent the algorithm from 
choosing these links, it is possible (as in this example) that the total impedance of the 
set of links with GPS points is still larger than the large artificial impedance assigned to 
the link without GPS points. This problem could be potentially overcome by assigning 
even higher impedances to the links without GPS points. The MP algorithm is less 
affected by the relative locations of origin and destination and, hence, correctly finds the 
links traversed during the trip. 
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Figure 4-3. A round trip (a) GPS tracks, (b) GWSP algorithm, and (c) MP algorithm 

Overall, this small-scale validation exercise demonstrates the ability of the 
proposed algorithms to generate reasonable routes that are fairly close to the true 
routes. Issues such as incomplete roadway networks were identified to cause the 
GWSP algorithm to fail in certain cases. It is also useful to note here that this study 
relies on the algorithms built-into ArcGIS for shortest-path calculations. Developing 
customized algorithms that are sensitive to missing links can help (in addition to the 
other methods discussed above) in ensuring that a complete route is always generated.  

 
4.2 Application to a Large Scale GPS-based Travel Survey 

 
4.2.1 Data 

The GPS data comes from the in-vehicle GPS-survey component of the Chicago 
Regional Household Travel Inventory (CRHTI). A high-resolution, GIS-compatible 
roadway network for the study area was obtained from ArcGIS Data and Maps from 
ESRI. This GIS layer has information on speed, functional classification, and distance of 
most links in the roadway (including local streets). Additionally, a GIS compatible sub-
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zone layer for the area was also obtained from the Chicago Department of 
Transportation (DOT). 

Chicago Regional Household Travel Inventory (CRHTI), NuStats (2008) is a 
recently conducted, between January 2007 and February 2008, comprehensive study of 
the demographics and travel behavior characteristics of a large number of households 
(10,552 households) in the greater Chicago area. Travel information for either 1-day or 
2-day of travel by household members was collected in conjunction with the socio-
demographics of the households and its members. Additionally, the study also had a 
GPS data collection component, collected in four stages for both in-vehicle and on-
person, for the trips made by the selected households.  

In stage 1, in-vehicle GPS data was collected for a dayôs duration at households 
that travel a lot (travel throughout the region as part of their job or who traveled into 
Chicago for personal or business reasons at least three times per week). Stage 2 had 
in-vehicle GPS data for households with at least one member making more than 10 trips 
per day by auto or who traveled more than 75 miles per day as part of their job. In stage 
3 in-vehicle GPS data was collected for heavy travelers for the period of 7 days. In 
stage 4, wearable GPS data was also collected for the period of 7 days. (NuStats and 
GeoStats, 2008) 

For the collection of in-vehicle travel data, a simple GPS data-logging device 
GeoLogger, Figure 4-4, was used.  

 
 

 
Figure 4-4. In-vehicle GeoLogger (source: GeoStats) 

 
The GeoLogger recorded date, time, latitude, longitude, speed, heading, altitude, 

number of satellites, and HDOP for a vehicle at 1-seocnd interval. The Original data 
comprises of 6089852 GPS points from 9941 trips made by 408 vehicles (259 
households). 

The original data comprises of 6,089,852 GPS points from 9941 trips made by 408 
vehicles (from 259 households). From these, trips shorter than 5 minutes in duration or 
2 miles in distance were removed. The origin and destination of the remaining 5290 
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trips were mapped to the sub-zones and the trips with unique subzones at both ends 
were identified. The resulting 4406 trips have unique origin-destination pairs.  

The two map matching algorithms were applied to all these 4406 trips. The MP 
and GWSP methods generated complete routes for 4093 and 3889 trips respectively. It 
is useful to note that these were generated without any manual interventions such as 
visual inspections. There were 3886 trips for which both map-matching algorithms 
generated a route. For these cases, the shortest-distance (SD) and shortest (free-flow) 
travel-time (ST) routes were also generated. After further cleaning to remove outliers 
and inconsistent cases, the final sample consists of 3513 trips each of which has four 
routes; two from the map-matching algorithms (MP and GWSP) and two from normative 
route-choice algorithms (SD and ST).  

It is useful to recognize that the GPS traces do not necessarily start/end at nodes 
on the roadway network whereas the ñroutesò generated from various algorithms do. To 
ensure consistency in the start- and end- locations of all four routes generated for any 
trip, the origin- and destination- nodes determined from the MP algorithm were used as 
the terminal nodes in the determination of the other three routes (all of which use the 
ArcGIS-based shortest-path methods).  

For the final sample, based on the trip start times (available from the GPS data), 
six discrete time periods are defined for the time of day: early morning (midnight ï 6:30 
AM), AM peak (6:30 AM ï 9:00 AM), AM off peak (9:00 AM ï noon), PM off peak (noon 
ï 4:00 PM), PM peak (4:00 PM ï 6:30 PM), and evening (6:30 PM ï midnight). The 
frequency distribution of trips for the time of day, Figure 4-5, shows that the travelers 
preferred PM off peak period, noon ï 4 pm, for their travel as 30% of the trips, the most, 
were undertaken during the time period. Also, only 3% of the trips, the least, started in 
the early morning suggesting this period as the least preferred. Further, the examination 
of the trip lengths, Figure 4-6, indicates that the dataset consists of trips with 
considerable lengths. More than 50% of the trips are longer than 5 miles in length. 
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Figure 4-5. Time of day frequency distribution 
 

 
Figure 4-6. Trip length frequency distribution 

 
4.2.2 Aggregate Comparisons 

The useable data from Chicago comprise a total of 3513 trips each representing a 
unique origin-destination pair. For each OD pair, four routes are constructed: two 
chosen routes from the two map-matching algorithms (MP and GWSP), a shortest-
distance (SD) route, and a shortest-time (free-flow) (ST) route.  

Table 4-3 shows aggregate statistics of the routes produced by the four methods. 
Both the MP and GWSP algorithms produced similar routes as the summary measures 
(averages and deviances) for link count, distance and time are quite comparable.  

The median distance of the ñchosenò (i.e. determined from MP or DWSP 
algorithms) path is higher than median distance of the shortest-distance (and shortest-
time) path between the same sets of origin-destination pairs. Similarly, median (free-
flow) travel time of the ñchosenò (i.e. determined from MP or DWSP algorithms) path is 
higher than the median (free-flow) travel time of the shortest-distance (and shortest-
time) path between the same sets of origin-destination pairs. 

 
Table 4-1. Aggregate statistics of routes from the four methods 

  MP GWSP SD ST 

Links  (Count) 

Mean 112.10 111.02 108.57 110.58 

Median 76 76 72 75 

Std. Deviation 97.63 96.83 100.55 98.32 

Min 8 8 5 5 

Max 662 678 711 668 

Q1 48 47 44 46 
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Q3 138 135 133 137 

Distance (Miles) 

Mean 8.27 8.23 7.36 7.76 

Median 5.23 5.21 4.72 4.89 

Std. Deviation 7.90 7.90 6.81 7.31 

Min 2.01 2.01 0.67 0.67 

Max 57.12 57.12 46.59 52.72 

Q1 3.15 3.12 2.89 3.01 

Q3 10.08 10.01 9.14 9.68 

Time (Minutes) 

Mean 14.03 13.86 13.97 12.10 

Median 9.64 9.48 9.16 8.28 

Std. Deviation 11.64 11.56 12.39 10.02 

Min 2.78 2.78 1.60 1.60 

Max 80.84 83.30 87.40 64.59 

Q1 6.07 5.97 5.72 5.28 

Q3 17.68 17.46 17.46 15.28 
 

4.2.3 Measures of Similarity of Pairs of Routes 
The above analysis presented an overall (aggregate) summary across all the trips 

in the sample. Next, we examine the extent to which the routes generated between any 
OD pair are similar. The overlap (i.e., the set of common links) between any pair of 
routes is determined in ArcGIS by using the intersect tool. Once the common set of links 
have been identified, it is possible to calculate the number of common links, the total 
distance across the common links (overlap distance), and the total (free-flow) travel time 
across the common links (overlap time).  

From the three values identified above, four route-level measures of similarity can 
be constructed. These are (1) overlapping index (OI), (2) commonly ratio (CR), (3) 
distance deviation index (DDI), and (4) time-deviation index (TDI).  

The overlapping index (OI) is the ratio of number of links common to the two 
routes to the total number of unique links in both routes (Spissu et al., 2011). An OI 
value of 0 indicates that the two routes are completely disjoint (donôt share any common 
links) and a value of 1 indicates that both routes overlap perfectly (all links are the 
same).  

Commonly ratio (CR) of two routes is calculated as: #2  , where ,is the 

distance of common links in route É and Ê; ,is the distance of the route É and ,is the 

length of the route Ê (Pilat et al., 2011). As in the case of OI, the CR measure also takes 
values between 0 and 1 with 0 representing no overlap and 1 representing perfect 
overlap.  

The previous two metrics can be applied to any pair of routes. The next two 
metrics, DDI and TDI (Spissu et al., 2011) are used to compare an algorithm-generated 
route to the SD and ST routes respectively.  

The Distance Deviation Index (DDI) determines the extent to which the chosen 
route is longer (in distance) than the shortest-distance path between the same OD pair 
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and is calculated as: $$) , where Ä  is the distance of the chosen route and 

Ä  is the distance of the SD route. 
Similarly, Time Deviation Index (TDI) determines the extent to which the chosen 

route is longer (in time) than the shortest-time path between the same OD pair and is 

calculated as: 4$) , where Ô  is the time of the chosen route and Ô  is the 

time of the ST route. 
Using the similarity measures as described, the routes are compared in a pair-

wise manner. First, the routes generated by the two map-matching algorithms are 
compared to determine the extent to which they are similar. Next, the routes from each 
of the algorithms are compared to the SD path. Finally, the routes from each of the 
algorithms are compared to the ST path. 

 
4.2.4 Extent of Similarity of the Routes Generated by the Two MM Algorithms 

The routes generated by the two map-matching algorithms (MP and GWSP) are 
compared using the overlap index and commonly ratio measures.  

The frequency distributions of OI and CR are presented in Figure 4-7. Almost 88% 
of the routes have a commonly ratio of higher than 0.90 and 70% of the routes have an 
OI of 0.9 or greater. In fact, 49.44 % of the trips have a perfect overlap (OI = 1 and CR = 
1). About 95% of the routes have a CR value of greater than 0.8 and 85% of the routes 
have an OI value of greater than 0.8. Thus, in most (~ 85%) of cases, both algorithms 
generate routes that overlap significantly (80% or more) in terms of links and distance. 
Further, the overlaps are greater in terms of distance than in terms of links. This 
indicates that even if slightly different links are determined by two map-matching 
algorithms, these are likely to be short-distance links. 
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Figure 4-7. Comparison of routes from the two map-matching algorithms 

 
The routes are further examined by classifying the trips based on the trip length 

and time-of-day. First, the trip length is categorized into three groups: short (2-5 miles), 
medium (5-10 miles), and long (more than 10 miles). The time of day was reclassified 
into two periods: peak period (AM peak and PM peak) and off-peak period (early 
morning, AM off-peak, PM off-peak, and evening). After this, six discrete categories are 
created: peak short trips, peak medium trips, peak long trips, off-peak short trips, off-
peak medium trips, and off-peak long trips. 

From the Table 4-4, the OI and CR values marginally decrease with increasing 
length of the trips (for both peak and off-peak trips). This seems reasonable as, for 
longer trips, the algorithms ñseeò a much larger sub-network thereby increasing the 
probability of generating different paths. However, the median OI and CR values are 
significantly large even for the longest trips. For trips of any length, there is not an 
appreciable difference between peak- and off-peak trips.  

 
Table 4-2. Overlapping index (OI) for routes from MP and GWSP methods  

   Peak Off-peak Overall 
   Short Medium Long Short Medium Long   

Sample size 499 301 330 1219 623 541 3513 
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Mean 0.93 0.91 0.89 0.92 0.91 0.89 0.91 

Median 1.00 0.96 0.93 1.00 0.96 0.93 0.97 

Std. Dev. 0.14 0.13 0.12 0.14 0.13 0.12 0.13 

Min 0.18 0.24 0.36 0.14 0.06 0.32 0.06 
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Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Q1 0.90 0.87 0.85 0.90 0.88 0.85 0.88 

Q3 1.00 1.00 0.98 1.00 1.00 0.97 1.00 
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m
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o
 

(C
R
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Mean 0.97 0.96 0.95 0.96 0.96 0.95 0.96 

Median 1.00 0.99 0.98 1.00 0.99 0.98 0.99 

Std. Dev. 0.08 0.08 0.07 0.08 0.08 0.07 0.08 

Min 0.26 0.48 0.52 0.34 0.17 0.40 0.17 

Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Q1 0.97 0.96 0.94 0.96 0.96 0.94 0.96 

Q3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
4.2.5 Comparing the Chosen Routes Against the Shortest-Distance Routes 

The comparison of the chosen routes against the shortest-distance routes was 
performed using the commonly ratio (CR) and the distance deviation index (DDI). 

 

 
Figure 4-8. Commonly ratio (CR) of routes from the MM and SD methods 

 
The Figure 4-8 presents the CR values calculated between the chosen routes and 

the shortest-distance paths.  It is evident that the chosen routes are considerably 
different from the shortest-distance routes. On an average (median), the CR value is 
about 0.40 with a significantly large deviation across the trips. Less than 15% of the 
trips have a CR value of over 0.9 and about 22% of the trips have a value less than 
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0.1.The trends are quite similar irrespective of the algorithm used to generate the 
chosen route. This is not surprising given that we have already established that the two 
map-matching algorithms generate fairly similar routes.  

Commonly ratios of the chosen routes and the SD routes are presented in Table 
4-5. The CR of the chosen routes decreases sharply with the trip length (0.56 for short, 
0.4 for medium, and 0.16 for long) for both peak and off-peak conditions. This suggests 
that chosen path is likely to be more different from the SD path for longer trips.  

 
Table 4-3. CR of the chosen routes and the SD routes 

   Peak Off-peak Overall 
   Short Medium Long Short Medium Long   

Sample size 499 301 330 1219 623 541 3513 
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Mean 0.54 0.43 0.28 0.52 0.44 0.28 0.44 

Median 0.56 0.38 0.16 0.53 0.37 0.15 0.39 

Std. Dev. 0.34 0.34 0.29 0.34 0.34 0.29 0.34 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Q1 0.23 0.12 0.04 0.19 0.11 0.04 0.11 

Q3 0.85 0.75 0.46 0.85 0.75 0.45 0.76 
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 Mean 0.56 0.45 0.29 0.54 0.45 0.29 0.46 

Median 0.58 0.40 0.16 0.55 0.39 0.16 0.41 

Std. Dev. 0.35 0.34 0.30 0.35 0.35 0.29 0.35 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Q1 0.23 0.13 0.04 0.20 0.12 0.04 0.12 

Q3 0.89 0.76 0.48 0.87 0.78 0.46 0.79 

 
From the Table 4-6, on average, DDI increases with the trip length, indicating that 

the chosen route is generally longer than the shortest-distance route and the disparity is 
greater for longer trips. On an average (median), a distance along the chosen route for 
a short distance trips is about 4% longer than the shortest-distance path for the same 
route. The corresponding values are 6% and 10% for medium- and long- distance trips 
respectively.  
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Table 4-4. DDI of the chosen routes with the SD routes 

   Peak Off-peak Overall 
   Short Medium Long Short Medium Long   

Sample size 499 301 330 1219 623 541 3513 
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Mean 0.11 0.12 0.15 0.12 0.12 0.15 0.13 

Median 0.04 0.06 0.10 0.05 0.07 0.11 0.07 

Std. Dev. 0.21 0.27 0.18 0.24 0.23 0.13 0.22 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Max 2.48 3.89 2.21 2.97 3.62 0.82 3.89 

Q1 0.01 0.02 0.06 0.01 0.02 0.06 0.02 

Q3 0.12 0.15 0.18 0.14 0.16 0.19 0.15 
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Mean 0.10 0.12 0.14 0.11 0.11 0.14 0.12 

Median 0.04 0.05 0.10 0.04 0.06 0.11 0.06 

Std. Dev. 0.21 0.25 0.18 0.23 0.21 0.13 0.21 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Max 2.48 3.51 2.31 2.97 3.10 0.82 3.51 

Q1 0.00 0.01 0.05 0.00 0.02 0.06 0.01 

Q3 0.10 0.13 0.18 0.12 0.15 0.19 0.14 

 
Looking at the results for the CR and the DDI measures simultaneously is quite 

illuminating. It is clear that even though the chosen routes share only about 40% 
(overall median) of the distance in common with the shortest-distance path, the distance 
along the chosen route is only about 6% (overall median) longer than the distance along 
the shortest-distance path. This is possibly because of the presence of alternate 
(possibly parallel) links/paths in the network that are very comparable in terms of 
distances. 

 
4.2.6 Comparing the Chosen Routes Against the Shortest-Time Routes 

Prior to comparing the chosen routes against the shortest-time routes, it is useful 
to demonstrate that the SD and the ST paths are generally not the same in many cases. 
A comparison of the SD and ST routes, Figure 4-9, showed that only about 24% routes 
depicted OI of 0.9 or higher. Moreover, about 21% routes showed OI of less than 0.1. 
This confirms that for an OD pair the SD path is not necessarily the ST path. Also, the 
comparison of the chosen routes with the SD path, previous section, showed that as the 
trip length increases, the traveler tends to avoid the SD path. Therefore, to further 
understand the chosen routes, they are compared against the ST routes. 
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Figure 4-9. Comparison of routes from SD and ST methods 

 
The comparison of the chosen routes against the shortest-time routes was 

performed using the commonly ratio (CR) and the time deviation index (TDI). 
Figure 4-10 and Table 4-7 present the CR values calculated between the chosen 

routes and the shortest-time paths.  Similar to the shortest-distance routes, the chosen 
routes are considerably different from the shortest-time routes too. On an average 
(median), the CR value is about 0.55 with a significantly large deviation across the trips. 
Less than 23% of the trips have a CR value of over 0.9 and about 17% of the trips have 
a value less than 0.1.The trends are quite similar irrespective of the algorithm used to 
generate the chosen route.  

The CR of the chosen routes decreases with the trip length (0.58 for short, 0.51 for 
medium, and 0.42 for long) for both peak and off-peak conditions. This suggests that 
chosen path is likely to be more different from the ST path for longer trips. 
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Figure 4-10. Commonly ratio (CR) of routes from the MM and ST methods 
 
Table 4-5. CR for the chosen routes and the ST routes 

   Peak Off-peak Overall 
   Short Medium Long Short Medium Long   

Sample size 499 301 330 1219 623 541 3513 
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Mean 0.58 0.51 0.42 0.59 0.51 0.45 0.53 

Median 0.63 0.51 0.39 0.67 0.49 0.41 0.53 

Std. Dev. 0.35 0.35 0.33 0.35 0.35 0.32 0.35 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Q1 0.26 0.16 0.10 0.26 0.19 0.14 0.19 

Q3 0.93 0.85 0.69 0.93 0.86 0.74 0.88 
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 Mean 0.60 0.53 0.45 0.61 0.52 0.47 0.55 

Median 0.67 0.52 0.42 0.69 0.51 0.44 0.57 

Std. Dev. 0.36 0.36 0.34 0.36 0.35 0.34 0.36 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Q1 0.28 0.17 0.10 0.28 0.19 0.15 0.20 

Q3 0.98 0.88 0.74 0.99 0.88 0.79 0.91 
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From the Table 4-8, for peak travel, TDI increases with the trip length, suggesting 
that the more time is spend on the roads compared to the shortest-time between the OD 
pair and disparity is greater for longer trips. Therefore, with more distance travelled 
during peak period, more time is spent in the congestion. However, for the off-peak 
travel less disparity is observed for longer trips.  

On an average (median), a time along the chosen route for a short distance trips is 
about 8% longer than the shortest-time path for the same OD pair. The corresponding 
values are 11% and 14% for medium- and long- distance trips respectively. 

 
Table 4-6. TDI of the chosen routes with the ST routes 

   Peak Off-peak Overall 
   Short Medium Long Short Medium Long   

Sample size 499 301 330 1219 623 541 3513 
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Mean 0.18 0.19 0.19 0.18 0.18 0.16 0.18 

Median 0.08 0.11 0.14 0.08 0.11 0.12 0.10 

Std. Dev. 0.35 0.26 0.22 0.32 0.28 0.15 0.28 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Max 4.45 2.69 2.36 4.82 3.24 0.86 4.82 

Q1 0.01 0.04 0.05 0.01 0.03 0.05 0.03 

Q3 0.22 0.26 0.25 0.22 0.23 0.23 0.23 
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Mean 0.16 0.17 0.17 0.16 0.16 0.15 0.16 

Median 0.06 0.09 0.13 0.07 0.09 0.11 0.09 

Std. Dev. 0.35 0.24 0.21 0.31 0.25 0.14 0.27 

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Max 4.45 2.38 2.42 4.82 3.02 0.85 4.82 

Q1 0.00 0.01 0.05 0.00 0.02 0.04 0.01 

Q3 0.19 0.23 0.23 0.20 0.22 0.20 0.21 

 
Results for the CR and the TDI measures clearly show that even though the 

chosen routes share only about 53% (overall median) of the time in common with the 
shortest-time path, the time along the chosen route is only about 10% (overall median) 
longer than the time along the shortest-time path. This suggests that the travel is made 
on links with comparable travel times to the links in the shortest-time path. 

 
4.2.7 Simultaneously Comparing the Chosen Routes Against the SD and ST 

Routes 
Further, to understand whether the traveler followed the SD route more or the ST 

route, a simultaneous comparison of the chosen routes against the SD and ST routes 
was conducted. For this, distance overlap, commonly ratio, of the chosen route with the 
SD route and the ST route were compared, Figure 4-11. Specifically, if the CR of the 
chosen route with the SD route is higher than the CR of the chosen route with the ST 
route then it can be deduced that the traveler followed the SD route more than the ST 
route. Similarly, if the CR of the chosen route with the ST route is higher than the CR of 
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the chosen route with the SD route then it can be deduced that the traveler followed the 
ST route more than the SD route. 

To avoid the comparison of fairly similar shortest-cost routes, the trips with CR of 
the SD and ST routes higher than 0.9 were not considered for the comparison. Also, if 
the observed route have no overlap with either of the shortest-cost routes, it was 
removed from the analysis.  

It is important to note that as the observed route from MP and GWSP are mostly 
similar, the similar results were obtained for the either route, therefore results are shown 
only for one MM method. 

 

 
Figure 4-11. Comparison for trip length in time of day 

  
The comparison of the chosen routes with the SD and ST routes for trips length in 

different time periods is shown in Figure 4-11. The graph clearly shows that trips prefer 
to travel on ST route more than the corresponding SD route. Moreover, as the trip 
length increases ST route is followed more. However, ST route is travelled less during 
the peak period indicating that during congestion people prefer try to follow the SD path 
more. 

4.3 Summary 
The algorithms were first validated on locally collected GPS data on known routes. 

While both algorithms performed well, it is observed that the GWSP was more sensitive 
to missing links in the network than the MP approach. On applying the algorithms to 
large dataset comprising almost 4000 trips, both algorithms generated complete trips for 
a vast majority of the cases (again the MP produced mode complete trips than the 
GWSP).  

On comparing the 3500 trips for which both algorithms produced results, we find a 
substantial similarity between the routes generated in terms of both common links and 
the extent of distance overlap. This holds irrespective of trip distance and time-of-day of 
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travel. Broadly, this result suggests that the simpler GWSP algorithm might be 
appropriate to generate chosen routes from GPS traces if a good (complete) roadway 
network database is available.  

On comparing the predicted ñchosenò routes to the shortest-distance and shortest-
path routes between the same locations, we find that the extent of overlap between the 
ñchosenò and ñshortestò paths in terms of the common links is small. The disparity 
between these routes generally increases with distance but is generally the same 
across the peak- and off-peak periods. Finally, the ñchosenò paths follow the shortest-
(free-flow)-time paths more than they follow the shortest distance paths, especially for 
longer trips. This clearly reflects a preference for using higher-speed facilities for longer 
trips.  

Even though the chosen paths are quite deviant from the shortest paths in terms 
of the actual links traversed, the overall distance/time along the chosen path is fairly 
close to the distance/time along the shortest paths. This is possibly because of the 
presence of alternate (possibly parallel) links/paths in the network that are very 
comparable in terms of distances and times. 
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CHAPTER 5 
DATA ASSEMBLY FOR MODEL ESTIMATIONS 

The chapter describes the procedure to assemble the data for model 
estimations. This process involves two major steps. First, several characteristics 
of the trip- and trip-maker are determined for use as explanatory variables in the 
models. This is discussed in Section 5.1. Next, alternative routes are constructed 
and characterized for each trip leading to the formation of the choice set for each 
route.  An enhanced version of the BFS-LE algorithm proposed by Schussler et 
al. (2012) is used for choice-set generation. This procedure and the various 
attributes determined for each of the routes in the choice set are discussed in 
Section 5.2. This section also presents a descriptive summary of the analysis 
sample to be used for building the route-choice models.  

5.1 Trip- And Traveler- Characteristics 
The two map-matching algorithms generated observed routes for 3513 

routes. Of these trip- and traveler- characteristics were completely determined for 
2850 trips. The loss of samples was mainly because of our inability to determine 
the trip-maker characteristics for over 600 trips. The reader will note that the GPS 
streams do not directly identify the trip-maker and, therefore, secondary data had 
to be used to determine the drivers of the vehicles being tracked by the GPS 
devices.  Section 5.1.1 discusses the trip-characteristics and Section 5.1.2 
presents the procedure for determining the vehiclesô primary drivers, and, hence, 
the characteristics of the trip makers.  

 
5.1.1 Trip Characteristics 

Certain characteristics of a trip such as the total travel duration and the 
time-of-day of travel are directly obtained from the GPS streams. One of the 
major trip attributes that is not obtainable purely from the traces is the trip 
purpose. The travel survey did include the residential location (latitude and 
longitude) of the respondents. If a trip-end fell within a buffer zone of radius 0.5 
mile around the home location of the respondent, the trip-end was classified as 
ñhomeò. By this procedure, 1597 out of the 2850 trips are classified as HB trips.  

Table 5.1 presents descriptive of the trip characteristics for the sample. 
56% of the trips are home-based and among them, about 30% originated at 
home. Further, majority of the trips (61.4%) are performed during weekdays 
(excluding Friday) with about 26% during weekends.32.5% of the trips are made 
during peak period. Also, trips shorter than 5 miles in length are prominent 
(48.8%) in the sample. 
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Table 5-1. Trip characteristics 
Characteristic Share (%) 

Trip Type  
From Home 30.4 
To Home 25.6 
NHB 44.0 

Travel Day  
   Weekday (Monday - Thursday) 61.4 

Friday 12.7 
Weekend 26.0 

Travel Time  
Peak 32.5 
Off-Peak 67.5 

Trip Length  
Short (2-5 miles) 48.8 
Medium (5-10 miles) 26.6 
Length (>10 miles) 24.6 

  
5.1.2 Traveler Characteristics 

Traveler characteristics include both household-attributes (such as 
composition and income) and person-attributes (such as age and gender).  

The determination of the household-attributes of the trip-maker was rather 
straightforward given that there were explicit identifiers in the data linking the 
GPS traces to specific vehicles, and the vehicles to the households surveyed. 
The householdïattributes determined include size, vehicles, licensed drivers, 
type, home ownership, and income. 

The determination of the person-attributes was not as straightforward as 
there was no explicit identifier linking the GPS traces to a specific person in the 
household. As a consequence, a primary driver was identified for every 
household vehicle using the self-reported (CATI) component of the overall travel 
survey. The primary driver of a vehicle is the household member who used the 
vehicle the most during the survey day (for the one-day CATI survey). To a large 
extent (over 75%), a unique household member was identified as the primary 
diver for each vehicle. This primary driver was assumed to the trip-maker for all 
trips associated with the driverôs vehicle. The person characteristics determined 
include age, gender, ethnicity, and employment/student status. Table 5-3 
presents descriptive of the travelersô characteristics. 

On average, a household in the sample is consist of about 3 members and 
owns 2 vehicles. The sample is dominated by the households that live in a 1-
family detached home (81.1%) and owns the home (91%). Also, about 72% of 
the households have annual income of higher than $60k.  

The sample has a mix of males and females and majority (78%) of the 
individuals is older than 35 years. Most of the individuals (49.9%) in the sample 
are of white ethnicity and about 45% refused to reveal their ethnicity. 71.4% of 
the individuals are employed and only 11% are students. 
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Table 5-3. Travelersô characteristics of the final sample 
Household characteristics Person characteristics 

Attribute Share (%) Attribute Share (%) 
Household Size 2.84 (1.29)* Gender  
Household Vehicles 2.17 (0.97)* Male 46.7 
Home Type  Female 53.3 

1-family detached 81.1 Age (years) 48.08 (18.45)* 
1-family attached to other houses 11.8 < 16 5.7 
Building with multiple apartments 5.9 16 ï 25 6.1 
Refused 1.3 25 ï 35 10.1 

Home Ownership  35 ï 45 17.2 
Owned 91.0 45 ï 55 27.3 
Rented 7.6 >55 33.5 
Refused 1.4 Ethnicity  

Household Income(per year)     White 49.9 
Less than $20,000 1.2 Black/ African American 3.7 
$20,000 - $34,999 6.4 Other 1.2 
$35,000 - $49,999 8.8 Refused 45.1 
$50,000 - $59,999 4.9 Employment  
$60,000 to $74,999 8.7 Yes-Full Time 52.8 
$75,000 to $99,999 27.5 Yes-Part Time 18.6 
More than $100,000 35.8 Not 23.5 
Refused 6.7 Refused 5.1 

Time at current home location  Student  

New (<2 years) 9.1 Yes-Full Time 7.2 
Medium (2-10 years) 44.7 Yes-Part Time 3.8 
Experienced (>10 years) 46.2 No 89.0 

Note: *presents mean (std. deviation) 

 
 
 

5.2 Determination And Characterization Of Alternate Routes 
 
A major step in the data assembly process is to determine a set of alternate 

routes for each OD pair (i.e. the choice set) and to characterize the routes in the 
set using several attributes. The Breadth First Search Link Elimination (BFS-LE) 
procedure to determine the alternate routes is discussed in 5.2.1 and the 
characterization of the routes is described in Section 5.2.2  

 
5.2.1 Breadth First Search Link Elimination (BFS-LE) 

The fundamental BFS-LE algorithm from Schussler et al. (2012) was 
implemented using Visual Basic Application (VBA) in ArcGIS including some 
operational enhancements. The algorithm begins by constructing the shortest-
cost path considering the full network. Subsequently, a BFS-LE tree (i.e. the set 
of alternate routes for the OD pair) is developed by repeatedly constructing 
shortest-cost paths after removing a link from a previously constructed shortest-
path. In this study, free-flow travel time on links is used as the generalized cost 
and the built-in shortest-path calculation tools from ArcGIS are used.  
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Figure 5-1. Basic BFS-LE tree

First shortest path 

No shortest path Same path 

Route 1 Route 2 Route 3 Route 4 Route 5 

Route 6 Route 7 

Barrier 
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Figure 5-1 presents a conceptual summary of the approach. Each ñboxò is a 
node of the BFS-LE tree and comprises a sub-roadway network (The root node 
or the top-most node has the full roadway network). All nodes at the same level 
(or depth) represent sub-networks that were obtained by removing links from the 
same previously-generated shortest path. In the current implementation, the 
ñremoval of a linkò is implemented in ArcGIS by using a point barrier at the mid-
point of the link. All the nodes (sub networks) at the same depth are examined 
before proceeding to nodes at a lower depth implying a breadth-first search.  

Some iteration may result in no feasible shortest path. Moreover, similar 
paths could be calculated at different nodes. In that case, only the first path is 
saved into the choice set. 

The following implementation details are of interest.  
In a high-resolution network, a least cost path between an OD pair can 

easily contain a large number of nodes and links as even the local streets and 
the corresponding intersections are represented. Further, even a continuous 
roadway segment could be represented by several links of small lengths (in other 
words not all nodes are intersections) to capture differences in one or more 
attributes along the roadway. Thus, the number of possible links that could be 
removed is too large making the BFS-LE tree quite complex. At the same time, 
removing links that are simply a part of a contiguous segment would not lead to 
truly alternate paths thereby affecting the overall computational efficiency of the 
algorithm. To address this issue, only links that end on intersections are 
considered as possible candidates for ñeliminationò.  

 It is useful to note that Schussler et al. 2012 addressed this issue by 
adjusting the roadway topology by ñdissolvingò adjacent links that are not 
connected by an intersection into bigger segments. Essentially, this procedure 
ensures that all the nodes in the corrected network are intersections. However, 
one could lose the detailed roadway-attribute information during this process as 
these get averaged to represent the longer segment. Our approach of eliminating 
only links ending in intersections addresses the computational issues while still 
preserving the detailed roadway characteristics.  

 Further links that are very close to the origin and/or destination (within 
0.15 miles) are also not candidates for elimination as these can quickly lead to 
sub networks with infeasible paths. This procedure was also adopted by Park 
and Rilett (1997). 

 Once a link has been eliminated and a sub-network has been developed, 
the algorithm first checks for the uniqueness of the sub-network. The reader can 
see that it is possible to arrive at the same sub network (node) by removing the 
same set of links but in a different order. Ensuring uniqueness prior to re-running 
the shortest-path within the sub network is another approach to reduce 
processing time.  

 Once a shortest path has been identified within a sub network, its 
ñuniquenessò is examined. For this purpose, the commonly factor is calculated 
between the newly identified route and all the previously identified routes in the 
choice set. If this factor is less than 0.95, the new route is introduced into the 
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choice set as another alternative. If not, the new route is deemed to be very 
similar to one of the routes already in the choice set and is therefore excluded.  

 Finally, it is also very useful to set termination conditions. The algorithm is 
set to terminate after generating a minimum set of alternatives for each route (20 
in this study).  However, sometimes it might take an excessively long time to 
identify 20 alternatives. To take care of this issue, a maximum run time threshold 
is also imposed with this time being dependent on the speed of the computer 
being used.  

The algorithm was run for 2692 of the 2850 trips (the trips longer than 25 
miles were excluded considering run time issues). As shown in Figure 5-2 and 
Table 5-4, for over 72% of these trips, 14 or more alternative routes were 
generated within stipulated run times. Less than 15% of the cases had fewer 
than 10 routes and less than 2% had fewer than 5 routes. 
 

 
Figure 5-2. Frequency distribution of choice set size 
Table 5-4. Choice set size 
Choice set size Count % Share 

>= 14 1941 72.10 
>= 10 2303 85.55 
>= 5 2653 98.55 

 
 
Further, the observations with fewer than 14 alternatives in the choice set 

were examined for not having enough routes. As the path generation algorithm 
starts with the true shortest time route and generates more alternatives by 
removing links from it, the comparison of link counts in these routes may provide 
an insight into the behavior. The comparison of the link count in the shortest time 
route is presented in Table 5-5 and Figure 5-3. The comparisons indicate that the 
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average link count in the shortest time route of the observations with fewer than 
14 alternatives is significantly higher than the observations with at-least 14 
alternatives. Also, as mentioned before, a route is included in the choice set only 
if it meets the commonly factor criteria of 0.95. Therefore, with longer trips it is 
more difficult to keep generating highly diverse routes that meet the set CF 
criteria. This is due to the high trip lengths in the denominator of the CF 
calculation and would, compare to shorter trips, need a larger portion of non-
overlapped distance to meet the CF criteria of 0.95.  

 
Table 5-5. Comparison of link counts in the first shortest time routes 
 With at-least 14 alternatives Fewer than 14 alternatives 

 Mean SD Mean SD 
Link Count 74.87 48.11 147.71 81.54 
Distance 5.13 3.52 10.24 5.81 
Time 8.83 5.63 15.80 8.19 

 
 

 
Figure 5-3. Link count comparison 

 
Again, about 72% (1941) of the choice sets have 14 alternatives or higher. 

With this, we decided to use the choice set size of 15 for model estimations. 
Therefore, the observations with less than 14 alternatives in the choice set were 
filtered out. Further, 28 observations out of the remaining 1941 observations had 
the choice set of 14 alternatives and the chosen route was one of them. Again, 
such observations were also eliminated. Finally, the estimation sample (CS15) 
consists of 1913 observations with each having 15 alternatives in the choice set. 
For the same observations, two more samples with choice set sizes of 10 (CS10) 
and 15 (CS10) were also constructed. It is important to note that to construct 
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choice sets with size 10, first 10 alternatives generated from the path generation 
algorithm were considered. A similar process was used for constructing the 
sample with choice set size 5. 

 
5.2.2 Route Attributes 

Several attributes were generated for the chosen route and for each of the 
alternatives in the choice set. A summary of these attributes is presented in table 
5-6. The procedures employed to generate these attributes are discussed 
subsequently.  

 
Table 5-6. Route attributes 
Attribute name Definition 

Link Count Number of links in the route 
TotalDistance (miles) Total length of the route 
TotalTime (minutes) Total (free flow) time spent in traversing the route 
IntersectionCount Number of intersections along the route 
LongestLegDistance (miles) Distance of the longest continuous stretch between 

two intersections 
LongestLegTime (minutes) Travel time of the longest continuous stretch 

between two intersections 
LeftTurns Number of left turns made traversing the route 

(include all left turns and does not distinguish based 
on the left turn type) 

RightTurns Number of right turns made traversing the route 
ExpresswayDistance (miles) Distance of the expressway segments in the route 

ExpresswayTime (minutes) 
Travel time on the expressway segments in the 
route 

LongestExpresswayDistanceLeg 
(miles) 

Distance of the longest continuous expressway 
segments 

LongestExpresswayTimeLeg 
(minutes) 

Travel time on the longest continuous express 
segments in the route 

ArterialDistance (miles) Distance of the arterial segments in the route 
ArterialTime (minutes) Travel time on the arterial segments in the route 
LongestArterialDistanceLeg (miles) Distance of the longest continuous arterial road 

segment in the route 
LongestArterialTimeLeg (minutes) Travel time on the longest continuous arterial 

segments in the route 
LocalRoadDistance (miles) Distance of the local road segments in the route 
LocalRoadTime (minutes) Travel time on the local road segments in the route  
LongestLocalRoadDistanceLeg 
(miles) 

Distance of the longest continuous local road 
segments in the route 

LongestLocalRoadTimeLeg 
(minutes) 

Travel time on the longest continuous local road 
segments in the route 

MaxSpeed (mph) Average speed during the trip 
MeanSpeed (mph) Maximum speed attained during  the trip 

Circuity 
Deviation in terms of total length from the straight 
line distance between the origin and destination 
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A node is considered as an intersection if there is three or more segments 
meet on that node. Hence, the number of intersections is calculated by 
determining the number of nodes with three or more segments.  

A leg is defined as the stretch of the route between two intersections. 
Therefore, the longest leg by distance and time is calculated as the maximum leg 
distance and leg time respectively for a route. 

Number of turns in a route are determined by reading the directions output 
provided by the route solver in ArcGIS. The directions window explicitly specifies 
the types of turn, if required, along a route. The output also distinguishes the 
turns in terms of sharp and normal turns. The text in the output is read to 
determine the number of turns. 

The roads in the network are classified into three categories: freeways, 
arterials, and local roads. The total distance and time on each road types is 
calculated and then the corresponding proportions are determined. The longest 
continuous travel (distance and time) made on each road type is also estimated.  

Two measures of speed are calculated for a route: average speed, and 
maximum speed. The average speed is calculated by taking the time weighted 
average of the posted speeds on the segments of a route.  

Circuity is used as a measure of the route distance deviation from the 
network-free straight line distance between the origin and destination. The 
straight line distance (SLD) is calculated using the Haversine formula of 
calculating distance between two points: 

3,$ ÍÉÌÅÓ!ÒÃ#ÏÓÓÉÎÌÁÔρzÓÉÎÌÁÔςÃÏÓÌÁÔρzÃÏÓÌÁÔς
ÃzÏÓÌÏÎÇςÌÏÎÇρz2 

Where, lat1 and long1 are the latitude and longitude of a point, and R is the 
earth radius (3949.99 miles). 

The circuity is then calculated by taking the ratio of the route length with the 
straight line distance. The circuity is always greater than or equal to 1. 

#ÉÒÃÕÉÔÙ
2ÏÕÔÅ ,ÅÎÇÔÈ

3,$
 

 
Finally, it is useful to acknowledge that good estimates of congested travel times 
were not available for use in this study. 
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Table 5-7. Descriptive of route attributes 
Attributes Chosen route Choice set alternatives 

   CS15 CS10 CS5 

 Mean SD Mean SD Mean SD Mean SD 

Link Count 75.03 47.86 79.75 49.66 79.07 49.59 78.29 49.50 
TotalDistance (miles) 5.31 3.69 5.48 3.67 5.44 3.66 5.37 3.63 
TotalTime (minutes) 9.75 6.44 9.83 6.16 9.69 6.04 9.52 5.95 
Intersections 16.28 11.21 17.75 11.40 17.60 11.43 17.36 11.36 
LongestLegDistance (miles) 1.47 1.77 1.35 1.49 1.35 1.52 1.34 1.50 
LongestLegTime (minutes) 2.70 2.83 2.39 2.49 2.37 2.29 2.34 2.25 
LeftTurns 1.31 1.21 3.18 1.55 3.04 1.53 2.81 1.51 
RightTurns 1.36 1.25 3.23 1.58 3.09 1.56 2.84 1.55 
Distance Proportion on  Expressways 0.59 5.82 0.58 5.41 0.62 5.60 0.64 5.71 
Time Proportion on Expressways 0.46 4.74 0.42 4.09 0.46 4.28 0.47 4.37 
LongestExpresswayDistanceLeg (miles) 0.08 0.81 0.07 0.69 0.07 0.70 0.07 0.67 
LongestExpresswayTimeLeg (minutes) 0.08 0.90 0.07 0.77 0.08 0.78 0.07 0.75 
Distance Proportion  on Arterials 33.14 33.52 36.50 31.07 37.01 31.35 38.00 32.09 
Time Proportion on  Arterials 29.08 31.11 31.15 27.92 31.72 28.30 32.80 29.17 
LongestArterialDistanceLeg (miles) 1.75 2.81 1.80 2.59 1.79 2.58 1.85 2.75 
LongestArterialTimeLeg (minutes) 2.57 3.99 2.60 3.65 2.58 3.62 2.67 3.86 
Distance Proportion on Local Roads 66.27 33.80 62.92 31.28 62.37 31.58 61.37 32.30 
Time Proportion on  Local Roads 70.46 31.36 68.43 28.12 67.83 28.51 66.74 29.37 
LongestLocalRoadDistanceLeg (miles) 1.08 1.94 1.19 1.61 1.16 1.59 1.13 1.59 
LongestLocalRoadTimeLeg (minutes) 2.26 3.96 2.51 3.48 2.43 3.29 2.38 3.28 
MaxSpeed (mph) 40.09 6.37 41.13 5.87 41.14 5.90 41.11 5.90 
MeanSpeed (mph) 34.19 4.98 33.17 4.64 33.32 4.68 33.55 4.76 
Circuity 1.39 0.36 1.44 0.34 1.42 0.31 1.40 0.28 
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Distance and time on expressway is really low compared to arterials or local 
roads, Table 5-7. As most of the trips (64.6%) are shorter than 10 miles, it is reasonable 
to expect low expressway usage. Among choice sets with different sizes, average 
distance and average time increase with more alternatives in the choice sets. As the 
path generation algorithm starts with the true shortest time route, and determines the 
next shortest time route, next alternative, by eliminating a link in the route, with more 
alternatives the routes get longer. As expected, the average intersections, left turns and 
right turns in the chosen route are less than the alternatives in the choice sets. The 
average mean speed on the chosen routes is higher than the alternatives in the choice 
sets.  

Choice set composition is examined in terms of the maximum overlap of 
alternatives with the chosen route. The overlaps are calculated using a python script 
and the results are presented in Figure 5-4 for three datasets. 

For CS15, about 36% of the observations already include the chosen route in the 
choice set. Moreover, more than 51% of the observations replicate at-least 90% of the 
chosen route in the choice set. These numbers are lower for sample with lesser 
alternatives; nevertheless more than 40% of the observations include at-least 90% of 
the observed route. This indicates that the choice sets are composed of reasonable 
alternatives. 

 

 
Figure 5-4. Frequency distribution of overlap with the chosen routes 

 
Further, to assess the heterogeneity of alternatives in the choice sets, the variation 

of the commonly factor (CF) within a choice set is calculated and its distribution over all 
the observations is examined, Figure 5-5. As expected, the variation in the variation of 
CF within a choice set grows as the choice set size decreases. Precisely, CS5 contains 
more diverse routes (higher CF) in the choice sets than the other two datasets. The 
inclusion of more alternatives in the choice sets results in lesser variation in CF, thus 
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suggesting the presence of more similar routes in the choice sets. The behavior seems 
reasonable with the fact that fewer alternatives are more likely to have higher diversity 
than high alternatives. In general, all datasets contain routes with varied commonly 
factor within the choice sets which suggests that the choice set contains dissimilar 
routes. 

 

      
Figure 5-5. Frequency distribution of CFôs standard deviation within a choice set  

 
To prepare the samples for model estimations, the chosen route is manually 

added to the choice set if it is not already present and the extra alternative is eliminated 
to maintain the choice set size. 

5.3 Summary 
Out of the 3513 observations, for which the map-match algorithms generated 

routes, 2850 observations had trip- and traveler- characteristics determined. Further, an 
enhanced version of the Breadth First Search Link Elimination (BFS-LE) was used to 
generate choice sets for 2692 observations that were shorter than 25 miles. The 
enhancements to the BFS-LE were aimed to generate diverse and yet attractive routes 
in the choice sets. The generated choice sets were assessed for the choice set size, 
coverage and heterogeneity. Over 72% of the generated choice sets contained 14 
alternatives or higher. Also, the alternatives in the choice sets provided reasonable 
coverage of the chosen routes and were found to be different from each other.  














































