Modeling Roundabouts Using SIDRA INTERSECTION

Presenter:
Rahmi Akçelik
rahmi.akcelik@sidrasolutions.com
www.sidrasolutions.com

Roundabout Capacity, Level of Service and Performance

SIDRA INTERSECTION

First released in 1984
Over 2600 sites in 92 countries

Continuous development in response to user feedback
Roundabouts with Metering Signals

Roundabout Capacity, Level of Service and Performance

SIDRA INTERSECTION Users

Over 2600 site licences issued in 92 countries (25 June 2009)

Roundabout Capacity Models

SIDRA SOLUTIONS.COM © 2000-2009 AKCELIK & ASSOCIATES PTY LTD
Roundabouts with Metering Signals

Roundabout Capacity, Level of Service and Performance

Roundabout Capacity Models

- **Geometry**
- **Driver Behavior**

BOTH (not just Geometry) ...

Lane use at roundabouts
Roundabouts with Metering Signals

Roundabout Capacity, Level of Service and Performance

Lane underutilisation at roundabouts

- Flares (short lanes)
- Exclusive lanes

Dominant flows at roundabouts
(effect of O-D demand pattern)
Roundabouts with Metering Signals

NCHRP Report 572

- Research on US roundabouts (NCHRP Project 3-65)
- Basis for 2010 Highway Capacity Manual (after revisions)
- Highly important for US practice
- Implemented in SIDRA INTERSECTION Version 4 released July 2009

Examples

- Compare
 - NCHRP Report 572 capacity model and
 - Standard SIDRA INTERSECTION capacity model (calibrated using Environment Factor for US conditions)
- Single-lane and multi-lane roundabouts selected to demonstrate various issues
- Roundabout Metering signals (example)
Discussions of related issues

- Importance of the basic findings of NCHRP Report 572 research on US roundabouts
- Lower capacity of roundabouts in the USA compared with Australian and UK roundabouts
- NCHRP 572 model implementation and extensions in SIDRA INTERSECTION (further issues raised)
- Choice of Level of Service (LOS) thresholds for roundabouts
- Possible increases in roundabout capacities in the USA over time

Importance of the basic findings of NCHRP Report 572 research on US roundabouts
Driver Behavior and Roundabout Geometry

- NCHRP Report 572 confirmed that roundabout geometry alone is not sufficient for modeling capacity of roundabouts, and driver behavior parameters are most important:

 "... the fine details of geometric design appear to be secondary and less significant than variations in driver behavior at a given site and between sites. (the driver behavior is) the largest variable affecting roundabout performance (although) geometry in the aggregate sense (number of lanes) has a clear effect on the capacity of a roundabout entry ..."

- NCHRP Report 572 recognized importance of lane-by-lane modeling of roundabouts

 These conclusions confirm the basic premises of the Australian method, and is in sharp contrast with the UK TRL method.
Regression (empirical) and gap-acceptance models

- NCHRP Report 572 proposed Exponential models of capacity for single-lane and two-lane roundabouts
- The NCHRP 572 exponential regression model is in fact a gap-acceptance model which uses the form of Siegloch M1 gap-acceptance model (random arrivals)
- NCHRP Report 572 showed that the capacity model using exponential regression and using the model derived using average field values of the gap-acceptance parameters are very close.

Thus modeling capacity by a gap-acceptance method (using critical gap and follow-up headway parameters determined in the field in a "theoretical" gap-acceptance equation) and modeling capacity by direct regression using field capacities give very close results.

This confirms the validity of gap-acceptance methodology for roundabout capacity modeling.
Roundabouts with Metering Signals

Lower capacity of roundabouts in the USA compared with Australian and UK roundabouts

- The NCHRP Report 572 raised the question:
 How appropriate are some international research and practices are for the United States?

- and found that:
 Drivers in the United States appear to use roundabouts less efficiently than models suggest is the case in other countries around the world (Australia and UK).

NCHRP 572 model implementation in SIDRA INTERSECTION

- NCHRP Report 572 recognized and assessed the SIDRA INTERSECTION model.
- Original SIDRA INTERSECTION roundabout capacity model is based on research on Australian roundabouts thus reflecting Australian driver characteristics.
- After early results of NCHRP 3-65 research, SIDRA INTERSECTION capacity model was calibrated for US versions of SIDRA INTERSECTION to provide lower capacity estimates as observed in the USA: Environment Factor = 1.2 as the default. For this paper, this is referred to as the SIDRA Standard Model.
In SIDRA INTERSECTION Version 4 released recently, roundabout capacity models proposed in NCHRP Report 572 report have been implemented as an alternative model. This model is referred to as the NCHRP 572 Model.

Two examples to compare the SIDRA Standard and the NCHRP 572 capacity models
Example 1: Single-Lane Roundabout

Based on the example described in Highway Capacity Manual 2000, Chapter 17.

A fairly balanced origin-destination flow pattern.

Environment Factor = 1.2 approximates NCHRP 572 model closely.

Environment Factor = 1.0 gives capacities about 30 per cent higher.

Capacities are very close (about 3-4% difference).

<table>
<thead>
<tr>
<th>App. ID</th>
<th>Approach Name</th>
<th>Flow Rate (veh/h)</th>
<th>Circulating Flow (gph)</th>
<th>Capacity (veh/h)</th>
<th>Degree of Overflow (veh/veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>El Moro NB</td>
<td>420</td>
<td>666</td>
<td>543</td>
<td>0.79</td>
</tr>
<tr>
<td>E</td>
<td>Buena Vista WB</td>
<td>510</td>
<td>495</td>
<td>671</td>
<td>0.76</td>
</tr>
<tr>
<td>N</td>
<td>El Moro SB</td>
<td>500</td>
<td>535</td>
<td>643</td>
<td>0.78</td>
</tr>
<tr>
<td>W</td>
<td>Buena Vista EB</td>
<td>540</td>
<td>450</td>
<td>703</td>
<td>0.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>App. ID</th>
<th>Approach Name</th>
<th>Flow Rate (veh/h)</th>
<th>Circulating Flow (gph)</th>
<th>Capacity (veh/h)</th>
<th>Degree of Overflow (veh/veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>El Moro NB</td>
<td>430</td>
<td>665</td>
<td>564</td>
<td>0.78</td>
</tr>
<tr>
<td>E</td>
<td>Buena Vista WB</td>
<td>510</td>
<td>495</td>
<td>689</td>
<td>0.74</td>
</tr>
<tr>
<td>N</td>
<td>El Moro SB</td>
<td>500</td>
<td>555</td>
<td>662</td>
<td>0.78</td>
</tr>
<tr>
<td>W</td>
<td>Buena Vista EB</td>
<td>540</td>
<td>456</td>
<td>721</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Example 2: Two-Lane Roundabout Cases

Based on an example published by Chard who demonstrated the lack of sensitivity of the UK TRL model to different approach lane use arrangements.

Two alternative approach and circulating lane arrangements:

- Case (i) - Unbalanced lane use: Two entry lanes and a single-lane circulating road
- Case (ii) - Balanced lane use: Two-lane approach roads with shared lanes and two circulating lanes
Example 2: Two-Lane Roundabout Cases

Both the SIDRA Standard and NCHRP 572 models identify the problem of unbalanced lane flows on the East approach (oversaturated).

UK TRL model was shown to fail to indicate the problem for this approach as originally demonstrated by Chard. UK TRL model capacity estimates for the two cases are the same (due to the "approach-based" method).
Example 2: Two-Lane Roundabout Cases

Both the SIDRA Standard and NCHRP 572 models give capacity estimates which differ significantly between Cases (i) and (ii).

Using a lane-by-lane method, the SIDRA Standard and NCHRP 572 models identify critical lanes distinguishing between exclusive and shared lane cases and allowing for any unequal lane utilization, thus identifying oversaturation on the East approach in the case of a single-lane circulating road with exclusive lanes.

Example 2: Two-Lane Roundabout Cases

Considering the annual values of one hour of traffic operation only, the difference between the two cases amount to approximately:

- 5,600 person-hours of delay
- US$57,000 in operating cost
- 2,500 gal of fuel consumption
- 24,000 kg of CO2 emission per year
Roundabouts with Metering Signals

Roundabout Capacity, Level of Service and Performance

NCHRP 572 model extensions in SIDRA INTERSECTION

- More than 2 lanes
- Short lanes (flares)
- Bypass lanes (slip lanes and continuous lanes)
- Closely-spaced or multiple intersections
 - Capacity Adjustment parameter
 - Probability of blockage
- Upstream signal effects: Extra Bunching parameter allows for platooning created by signals. This cannot be applied to the NCHRP 572 model based on random arrivals.

NCHRP 572 model extensions in SIDRA INTERSECTION

- A model for average conditions (regression) vs special situations (unbalanced lane use, unbalanced Origin-Destination pattern, high entry flow / low circulating flow)
- Lane flows according to the equal degree of saturation principle
 - Equal lane volume principle allocates too much volume into low-capacity lanes
 - Critical lane definition: highest degree of saturation
- Capacity constraint
Roundabouts with Metering Signals

Roundabout Capacity, Level of Service and Performance

NCHRP 572 model extensions in SIDRA INTERSECTION

- Pedestrian effects
- Heavy Vehicle (HV) effects:
 - Calculate HV factors for each lane using different HV percentages for individual turning movements
 - Specify heavy vehicle equivalent per movement for model calibration in specific situations where there are large commercial vehicles in particular movements.
- Fuel consumption
- Emissions (including CO2)
- Operating cost

Geometric delay:
All vehicles slow down to a safe negotiation speed at roundabouts. Geometric delay depends on approach and exit cruise speeds as well as the roundabout negotiation speeds, which depend on the geometric characteristics of the roundabout.
NCHRP 572 model extensions in SIDRA INTERSECTION

- Queue Length and Stop Rate estimates
 - For unsignalised intersections, HCM 2000 gives a cycle-average queue. This includes the instances with zero queues.
 - For signalized intersections HCM 2000 uses the back of queue concept.
 - For consistency, SIDRA INTERSECTION gives back of queue estimates in all output reports for unsignalised intersections as well.
Choice of Level of Service (LOS) thresholds for roundabouts

- NCHRP 572 recommended Level of service (LOS) criteria to be the same as those currently used for unsignalized intersections.
- SIDRA INTERSECTION offers options for choice of alternative LOS criteria for roundabouts including a SIDRA Roundabout LOS option with thresholds between those for signal and stop-sign control.
- The default LOS thresholds in SIDRA INTERSECTION are the same as signalized intersections.
- LOS Target parameter can be used to specify the acceptable LOS level for particular intersection types.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Signals: control delay per vehicle in seconds (d)</th>
<th>Roundabouts: control delay per vehicle in seconds (d)</th>
<th>Sign Control: control delay per vehicle in seconds (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$d \leq 10$</td>
<td>$d \leq 10$</td>
<td>$d \leq 10$</td>
</tr>
<tr>
<td>B</td>
<td>$10 < d \leq 20$</td>
<td>$10 < d \leq 20$</td>
<td>$10 < d \leq 15$</td>
</tr>
<tr>
<td>C</td>
<td>$20 < d \leq 35$</td>
<td>$20 < d \leq 35$</td>
<td>$15 < d \leq 25$</td>
</tr>
<tr>
<td>D</td>
<td>$35 < d \leq 55$</td>
<td>$35 < d \leq 60$</td>
<td>$25 < d \leq 35$</td>
</tr>
<tr>
<td>E</td>
<td>$55 < d \leq 80$</td>
<td>$60 < d \leq 70$</td>
<td>$35 < d \leq 50$</td>
</tr>
<tr>
<td>F</td>
<td>$80 < d$</td>
<td>$70 < d$</td>
<td>$50 < d$</td>
</tr>
</tbody>
</table>
Roundabout Metering Signals

The use of metering signals is a cost-effective measure to avoid the need for a fully-signalized intersection treatment.

Model introduced in SIDRA INTERSECTION Version 4

Model can be used with capacities estimated using the NCHRP 572 method as well.
Roundabouts with Metering Signals
Typical Arrangements

Melbourne, Australia (driving on the left-hand side of the road)

Metered approach: McDonald Street
Controlling approach: Nepean Highway Southeast
The NCHRP Report 572 found lower capacities at US roundabouts compared with those in Australia and UK.

The question arises about whether capacity of US roundabouts will increase over time due to "changes in driver experience over time".

Higher capacities from the models derived in Australia and UK might indicate potential increases in capacities.
Roundabouts with Metering Signals

Possible increases in roundabout capacities in the USA over time

- Rodegerdts suggested that possible reasons for lower capacities at US roundabouts include:
 - driver unfamiliarity with roundabouts as a relatively new control device
 - larger vehicles
 - prevalence of stop control, especially use of all-way stop control and lack of use of two-way yield control, and
 - lack of use of turn signals on exits causing driver hesitation during the yield process.

Factors in favor

- Expected increase in efficiency in driver behavior due to increased familiarity
- Increased congestion levels resulting in more aggressive driver behavior
- Reduced vehicle length and better acceleration capabilities
Factors against

- All-way stop control and two-way yield control:
 Practice in Australia is opposite to the US practice, i.e. all-way stop control is almost non-existent, and two-way yield signs are used commonly.
- If this difference is a significant factor, this aspect of US driving culture and traffic control environment would continue to affect roundabout capacities in the future.
- Note that lower gap-acceptance parameters are used in Australia for two-way sign-control as well.

Factors against

- Our recent roundabout research in Australia indicated that, the follow-up headway and critical gap values in Australia did not change much since 1980s in spite of significant increases in demand and congestion levels at roundabouts.
- Preference for larger vehicles may not change over time, or changing vehicle population may mean somewhat reduced acceleration capabilities.
Roundabouts with Metering Signals

Roundabout Capacity, Level of Service and Performance

Driver response time for relationship between capacity and driver behavior

Queue discharge headway (Follow-up headway) =

Driver response time + Queue space / Queue discharge speed

- Using Environment Factor = 1.2 for US conditions, South approach in Example 1, SIDRA INTERSECTION estimated
 - Driver response time = 1.8 s
 - Queue discharge headway = 2.91 s, Queue space = 7.62 m (25 ft), Queue discharge speed = 24.8 km/h (15.4 mph)
- Using Environment Factor = 1.0 for Australian conditions,
 - Driver response time = 1.3 s
 - Queue discharge headway = 2.40 s (all other factors same)

Thus small reductions in driver response times could result in significant capacity increases at US roundabouts over time.